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ABSTRACT This paper deals with the extended dissipativity and non-fragile synchronization of delayed
recurrent neural networks (RNNs) with multiple time-varying delays and sampled-data control. A suit-
able Lyapunov-Krasovskii Functional (LKF) is built up to prove the quadratically stable and extended
dissipativity condition of delayed RNNs using Jensen inequality and limited Bessel-Legendre inequality
approaches. A non-fragile sampled-data approach is applied to investigate the problem of neural networks
with multiple time-varying delays, which ensures that the master system synchronizes with the slave system
and is designed with respect to the solutions of Linear Matrix Inequalities (LMIs). The effectiveness of the
suggested approach is established by providing suitable simulations using MATLAB LMI control toolbox.
Finally, numerical examples and comparative results are provided to illustrate the adequacy of the planned
control scheme.

INDEX TERMS Dissipative analysis, multiple time-varying delay, recurrent neural networks, synchroniza-
tion, sampled-data control.

I. INTRODUCTION
Neural Networks (NNs) provide an interesting pattern for a
wider extent of complex systems over the past few decades.
Owing to its large number of applications in different areas
like associative memory, parallel processing, pattern classi-
fication, moving object speed detection, optimization, etc.,
Recurrent neural networks (RNNs) have been comprehen-
sively deliberated by researchers around the globe [1]–[3].
Time-delays have been undeniably engaged in the utilization
of RNNs. Thus, in both theoretical and practical sense, it is
however significant to emphasize the stability of delayed
neural networks [4]–[8]. Moreover, it is evident that there are
many important findings on stability which have been derived
in the Lyapunov perspective [9]–[12].

The associate editor coordinating the review of this manuscript and

approving it for publication was Haibin Sun .

Most of the research works have concentrated on dynam-
ics analysis problems for RNNs. It covers topics like syn-
chronization [13]–[15], state estimation [16], dissipativity
[17], [18], stability analysis [19], and so on. Asymptotical
stability of RNNs with mixed time-varying delays has been
studied in [19]. The authors in [20] addressed the problem of
sampled-data control for fuzzyMarkovian jump systems with
actuator saturation.

On the other hand, the active research area of synchroniza-
tion is fascinating and it is a remarkable one in numerous
real-time systems. The synchronization has a large num-
ber of engineering background like biological model frame-
work [13], [21]–[25]. A set of new sufficient conditions
ensuring the finite time synchronization of memristor based
chaotic NNs has been obtained in [13]. An exponential H∞
synchronization for a class of master and slave neural net-
works with norm-bounded uncertainties have been taken into
consideration in [22]. Recently, in [23], the idea of random
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FIGURE 1. The diagrammatic representation of master-slave
sampled-data control.

uncertainty for stochastic discrete-time systems has been pro-
posed.

Sampled-data control technique in the field of engineering
has received intensive recognition for its reliability and reli-
able performance compared to other control methods [26].
The idea of reliable asynchronous sampled-data filtering of
T-S fuzzy uncertain delayed neural networks with stochas-
tic switched topologies has been considered in [27]. The
dissipativity theory has been used for the development and
study of control systems that rely on energy-related fac-
tors [28], [29]. Furthermore, it includesH∞ and L2−L∞ per-
formance, passivity, and dissipativity performance by using
new appropriate weight matrices in a performance index.
Hence, it is justifiable to consider this framework for RNNs.
In many of the practical situations, it is shown that the
existence of small uncertainties in controllers during their
design could also make closed-loop systems unstable, and
such controllers are often called as fragile. It is therefore
necessary to consider a robust controller for the sampled
data system that ensures the closed-loop system stability and
performance level when the controller gains change in the
predefined admissible range [30]. Different from most of the
published works, the problem of non-fragile synchroniza-
tion for extended dissipativity and sampled-data RNNs with
multiple time-varying delays are studied here. The structure
of non-fragile sampled-data control has been represented
in Fig. 1.

In view of the above discussion, the LMI based approach
is developed in this paper to examine a class of RNNs with
multiple time-varying delays. The main contributions and
novelty of this paper are summarised as follows: (1)The
quadratic stability and extended dissipativity of RNNs with
multiple time-varying delays are obtained.

(2) A non-fragile synchronization is addressed for RNNs
and is utilized with some novel inequalties.

(3) The desired non-fragile sampled-data controller for the
considered system can be obtained with respect to a new set
of LMIs utilizing MATLAB toolbox.

(4) Finally, numerical examples and comparative results
are provided to illustrate the adequacy of the planned control
scheme.

The structure of the paper is outlined as follows: A brief
model description of RNNs and preliminaries are presented
in Section II. In Section III, some main results and adequate
conditions which are utilized to determine the controller
gains are given. To exhibit the applicability of the proposed
model, the numerical simulations are given in Section IV.
In Section V, the concluding part has been given.

A. NOTATIONS
In this paper, Rn denotes the n-dimensional Euclidean space
and the set of all m × n real matrices is denoted by Rm×n.
I and 0 denote the identity and zero matrices respectively,
with appropriate dimensions, asterisk ? represents the sym-
metric term of the matrix. Moreover, the block diagonal
matrix is given by diag(· · · ). We define sym(Y ) = Y + Y T ,
for any square matrix Y ∈ Rn. The notation AT represents the
transpose of the matrix A.

II. PRELIMINARIES
Consider the recurrent neural networks with multiple
time-varying delays as follows

v̇(t) = −Mv(t)+ Cf (v(t))+
∑N

j=1Wjf (v(t − τ̂j(t)))+V (t),

(1)

where v(t) = [v1(t), v2(t), · · · , vn(t)]T ∈ Rn rep-
resents the neuron state vector, n represents number of
neurons, f (·) = [f1(·), f2(·), · · · , fn(·)]T ∈ Rn repre-
sents the neuron activation functions, and v(t − τ̂j(t)) =[
v(t − τ̂j1(t)), v(t − τ̂j2(t)), · · · , v(t − τ̂jn(t))

]T
,

v(t − τ̂jk̂ (t)) ≥ 0, j = 1, 2, · · · ,N , k̂ = 1, 2, · · · , n denotes
the time-varying delays; M = diag(a1, a2, · · · , an) > 0; C ,
Wj denotes the connection weight n × n matrix and delayed
connection weight n × n matrices respectively; V (t) =
[V1(t),V2(t), · · · ,Vn(t)] ∈ Rn represents the external input
vector.

Furthermore, the following inequality is satisfied by the
neuron activation functions fk̂ (·).

s−
k̂
≤
fk̂ (x1)− fk̂ (x2)

x1 − x2
≤ s+

k̂
, (2)

where s−
k̂

and s+
k̂

are constants, x1, x2 ∈ R, x1 6= x2 and

fk̂ (0) = 0, k̂ = 1, 2, · · · , n. The master system is consid-
ered (1) and the corresponding slave system is described as
given below:

ṁ(t) = −Mm(t)+ Cf (m(t))+
N∑
j=1

Wjf (m(t − τ̂j(t)))

+V (t)+ u(t)+ w(t), (3)

where u(t) and w(t) represent the control input and the dis-
turbance input which belongs to L2[0,∞) respectively. The
error signal is taken as r(t) = m(t)− v(t) in this paper. Thus,
the synchronization error system can be described as follows:

ṙ(t) = −Mr(t)+ Cg(r(t))+
N∑
j=1

Wjg(r(t − τ̂j(t)))

+u(t)+ w(t), (4)
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where g(r(t)) = f (m(t)) − f (v(t)). To completely utilize
advanced computing technologies, the sampled-data control
has been used to synchronize delayed RNNs. The following
sampled-data controller is used here.

u(t) = K̄ r(tk ), t ∈ [tk , tk+1) .

Now, we consider the following non-fragile sampled-data
controller

u(t) = (K̄ +1K̄ (t))r(tk ). (5)

Here, K̄ refers to the gainmatrix of sampled-data controller
and the real-valued matrix1K̄ (t) represents the possible con-
troller gain fluctuation. Assume that the sampling intervals
satisfy 0 < tk+1 − tk = hk ≤ h, where h(t) = t − tk for
t ∈ [tk , tk+1) and h > 0 denotes the largest sampling interval.
r(tk ) is discrete measurement of r(t) at the sampling instant
tk .

Substituting (5) in (4), we have

ṙ(t) = −Mr(t)+ Cg(r(t))+
N∑
j=1

Wjg(r(t − τ̂j(t)))

+(K̄ +1K̄ (t))r(tk )+ w(t). (6)

Furthermore, the output error system of (6) is defined as
follows:

y(t) = r(t)+
N∑
j=1

r(t − τ̂j(t)). (7)

The following are the Assumptions that have been used.
A1: We assume the time-varying delays to be bounded as

shown below.

0 ≤ τ̂j(t) ≤ τ̂j, (8)

and ˙̂τj(t) ≤ ηj, where τ̂j, ηj refer to positive constants.
A2: The conditions described below are satisfied by the

neuron activation functions gk̂ (·).

s−
k̂
≤
gk̂ (rk̂ )

rk̂
≤ s+

k̂
, (9)

for all rk̂ 6= 0 and gk̂ (0) = 0, k̂ = 1, 2, · · · , n.
A3: Matrices χ1, χ2, χ3 and χ4 satisfy the following con-

ditions:
1. χ1 = χT1 ≤ 0, χ3 = χT3 > 0, χ4 = χT4 ≥ 0,
2. (||χ1|| + ||χ2||) .||χ4|| = 0.
The Definitions and Lemmas required in further derivation

of the results are given below.
Definition 1 [29]: For given matrices χ1, χ2, χ3 and χ4

satisfying Assumption (A3), the neural network (6) with (7) is
known as extended dissipative, if there exists a scalar δ > 0
such that, for all tf ≥ 0, the subsequent inequality holds.∫ tf

0
J (t)dt ≥ sup yT (t)χ4y(t)+ δ, 0 ≤ t ≤ tf , (10)

where J (t) = yT (t)χ1y(t)+ 2yT (t)χ2w(t)+ wT (t)χ3w(t).

Definition 2 [29]: Suppose that w(t) = 0. Then, the sys-
tem (6) is quadratically stable, if there exists a scalar ν > 0
such that the derivative of the Lyapunov function in terms of
time t satisfies V̇ (r(t)) ≤ −ν|r(t)|2.
Lemma 1 [4]: For any matrix W > 0, scalars a and b

satisfying b > a, a vector function ω : [a, b] ∈ Rn such that
the integrations are well-defined, we have

(b− a)
∫ b

a
ωT (α)Wω(α)dα

≥

[∫ b

a
ω(α)dα

]T
W
[∫ b

a
ω(α)dα

]
. (11)

Lemma 2 [5]: For a given symmetric positive matrix R ∈
Rn, any differentiable function r in [a, b] → Rn, then the
subsequent inequality holds:∫ b

a
ṙT (u)Rṙ(u)du ≥

1
b− a

φT diag{R, 3R, 5R}φ, (12)

where

φ =


r(b)− r(a)

r(b)+ r(a)−
2

b− a

∫ b

a
r(u)du

r(b)− r(a)−
6

b− a

∫ b

a
δa,b(u)r(u)du

 , (13)

where δa,b(u) = 2
(
u− a
b− a

)
− 1.

Lemma 3 [7]: For a differentiable function r : [α, β] →
Rn, a positive integer k ∈ N, m ∈ Z≥0, a positive definite
matrix R ∈ Rn×n, vector ξ ∈ Rkn, and any matrices Ni ∈
Rkn×n(i = 1, · · · ,m+ 1), the following inequality holds:

−

∫ β

α

ṙT (s)Rṙ(s)ds ≤
m+1∑
i=1

β − α

2i− 1
ξTNiR−1Ni

+Sym(Niψi−1(α, β))ξ, (14)

where

ψi(α, β) =


r(β)− r(α), i = 0;

r(β)− (−1)ir(α)−
i∑

j=1

l ij
j!

(β − α)j
ρ(j−1)

(α, β), i ∈ N∗,

ρm(α, β) =
∫ β

so

∫ β

s1
· · ·

∫ β

sm
r(sm+1)dsm+1 · · · ds1, so = α;

l ij = (−1)j+i
(
i
j

)(
i+ j
j

)
.

Lemma 4 [15]: Let A,B,P be matrices satisfying P > 0.

Then,
(
B AT

A −P

)
< 0 iff B+ ATP−1A < 0.

Lemma 5 [15]: Let Y ,Q and 1(t) be real matrices
with appropriate dimensions. In addition, 1(t) satisfies
1T (t)1(t) ≤ I . Then, for any constant ε > 0, the subsequent
inequality holds:

Y1(t)Q+ QT1T (t)Y T ≤ εYY T + ε−1QTQ.
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This Remark 1 is derived from Lemma 3 when m = 1.
Remark 1: For a differentiable function r : [α, β]→ Rn,

a positive integer k ∈ N, a positive definite matrix R ∈ Rn×n,
any vector ξ ∈ Rkn, and any matrices Ni ∈ Rkn×n(i = p, q),
the following inequality holds:

−

∫ β

α

ṙT (s)Rṙ(s)ds ≤ ξT [(β − α)(NpR−1NT
p

+
1
3
NqR−1NT

q )+ Sym(NpE1 + NqE2)]ξ, (15)

where E1ξ = r(β) − r(α),E2ξ = r(β) + r(α) −
2

β − α

∫ β

α

r(s)ds.

Remark 2: We can assign values to the weighting matrices
so that the concept of extended dissipativity gives a general
solution.
(1) L2 − L∞ performance: χ1 = 0, χ2 = 0, χ3 =

γ̃ 2 I , χ4 = I , and δ = 0
(2) H∞ performance: χ1 = −I , χ2 = 0, χ3 =

γ̃ 2 I , χ4 = 0, and δ = 0
(3) Passivity performance: χ1 = 0, χ2 = I , χ3 =

γ̃ , χ4 = 0, and δ = 0
(4) Mixed H∞ and Passivity performance: χ1 =

γ̃−1αI , χ2 = (1 = α)I , χ3 = γ̃ I , χ4 = 0 and α = 0.4
(5) (Q − S − R) Dissipativity: χ1 = Q, χ2 = S, χ3 =

R− α̃I , and χ4 = 0

III. MAIN RESULTS
In the following Theorems, we design the non-fragile
sampled-data control and some sufficient conditions are given
to guarantee that the error system (6) and (7) is synchro-
nizes and extended dissipative in the form of LMIs. First,
we assume that in Theorem 1 (1K̄ (t) = 0).
Theorem 1: Assume that (A1) and (A2) hold. For given

scalars 0 < β < 1, h > 0, τ̂j > 0, ηj > 0, ε1 >

0, ε2 > 0, matrices χl, l = 1, 2, 3, 4 satisfying (A3),
the error system (6) and (7) achieves quadratically stable and
extended dissipative synchronization, if there exist symmetric
matrices D = diag(d1, d2, · · · , dn) > 0,Hj > 0,Lj >
0,Bj > 0, X̄ ∈ R3n×3n > 0, R̄ > 0,R > 0,P > 0, Ū =[
Ū1 Ū2
∗ Ū4

]
> 0, Y > 0,A > 0,G > 0, any matrices

Npj > 0,Nqj > 0,Mpj > 0,Mqj > 0, (j = 1, · · · ,N ) and
positive diagonal matrices F,F1, · · · ,FN , such that the fol-
lowing LMIs (16), as shown at the bottom of the next page
hold with h(t) = {0, h}:

π =

[
π11 π12

? π22

]
> 0,

4 =

8∑
m=1

4m,

where

41 = −2e1PeT2N+7 + 2eN+2DeT2N+7 + eN+2
N∑
j=1

LjeTN+2

−(1− η1)eN+3L1eTN+3 − · · · − (1− ηN )e2N+2LN

×eT2N+2 + e1
N∑
j=1

HjeT1 − (1− η1)e2H1eT2 − · · ·

−(1− ηN )eN+1HN eTN+1 +
N∑
j=1

e2N+7(τ̂jBj)eT2N+7

+

N∑
j=1

sym
(
NpjE

j
1 + NqjE

j
2

)

+

N∑
j=1

sym(MpjE
j
3 +MqjE

j
4),

42 = −[e2N+3 e2N+8 e1 − e2N+3]X̄ [e2N+3 e2N+8
e1 − e2N+3]T + [e1 e2N+7 0] X̄ [e1 e2N+7 0]T

+2[he2N+5 e1 − e2N+3 h(e1 − e2N+5)]X̄

[0 0 e2N+7]T ,

43 = e2N+4(h− h(t))R̄eT2N+4 − e2N+4h(t)R̄e
T
2N+4,

44 = −2e2N+4Ū2(e1 − e2N+4)T + [e2N+7 e2N+7]

×(h− h(t))
[
Ū1 Ū2
? Ū4

]
[e2N+7 e2N+4]T

−h(t)e2N+4Ū3eT2N+4 − sym(Y TA),

45 = h2e2N+7ReT2N+7 − φ
T diag{R, 3R, 5R}φ,

46 = −e1ε1GeT2N+7 − e1ε1(GM +M
TGT )eT1

+e1ε1GCeTN+2 + e1
(
ε1GW1

)
eTN+3

+ · · · + e1
(
ε1GWN

)
eT2N+2

+e1ε1LeT2N+4 − e2N+7ε2(G+ G
T )eT2N+7

−e2N+7ε2MTGT eT1 + e2N+7ε2C
TGT eTN+2

+e2N+7
(
ε2W T

1 G
T )eTN+3 + · · ·

+e2N+7
(
ε2W T

NG
T )eT2N+2 + e2N+7ε2LT eT2N+4,

47 = −2[κ1e1 − eN+2]F[eN+2 − κ2e1]T

−2[κ1e2 − eN+3]F1[eN+3 − κ2e2]T − · · ·

−2[κ1eN+1 − e2N+2]FN [e2N+2 − κ2eN+1]T ,

48 = [e1 e2N+2]χ1[e1 e2N+2]T + 2[e1 e2N+2]χ2 eT4N+10
+e4N+10χ3 eT4N+10,

π11 = βP− χ4, π12 = [π1
12, · · · , π

N
12], π

l
12 = −χ4,

π12 = [π1
22, · · · , π

N
22], π

l
22 = (1− β)P− χ4, l = 1, · · · ,N .

Here, ei = [0n×(i−1)n In 0n×(4N+10−i)n]T , i =
1, 2, · · · , 4N + 10,
φT = [e1 − e2N+3 e1 + e2N+3 − 2e2N+5 e1 − e2N+3 −
6e2N+6], τ̂ j = τ̂j−τ̂j(t), κ1 = diag(s−1 , s

−

2 , · · · , s
−
n ), κ2 =

diag(s+1 , s
+

2 , · · · , s
+
n ).

Moreover, if the LMIs (16) is solvable, the desired con-
troller gain matrix is given by K̄ = G−1L.

Proof: Consider the LKF as given below:

V (r(t)) =
5∑
l=1

Vl(r(t)), t ∈ [tk , tk+1) , (17)
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where

V1(r(t)) = rT (t)Pr(t)+ 2
n∑

k̂=1

dk̂

∫ rk̂ (t)

0
gj(s)ds

+

N∑
j=1

∫ t

t−τ̂j(t)

[
gT (r(s))Ljg(r(s))ds

+rT (s)Hjr(s)ds
]

+

N∑
j=1

∫ 0

−τ̂j

∫ t

t+θ
ṙT (s)Bjṙ(s)dsdθ,

V2(r(t)) =
∫ t

t−h
ηT1 (s)X̄η1(s)ds,

V3(r(t)) = (tk+1 − t)(t − tk )rT (tk )R̄r(tk ),

V4(r(t)) = (h− (t − tk ))
∫ t

tk
ηT2 (s)Ūη2(s)ds,

V5(r(t)) = h
∫ 0

−h

∫ t

t+α
ṙT (s)Rṙ(s)dsdα,

with η1(s) =

[
rT (s), ṙT (s),

∫ t

s
ṙT (v)dv

]T
, η2(s) =[

ṙT (s), rT (tk )
]T
.

The time-derivative of Vl(r(t)) (l = 1, 2, · · · , 5) are given
by

V̇1(r(t)) ≤ −2rT (t)Pṙ(t)+ 2gT (r(t))Dṙ(t)

+

N∑
j=1

[
gT (r(t))Ljg(r(t))

−(1− ηj)gT (r(t − τ̂j(t)))Ljg(r(t − τ̂j(t)))
]

+

N∑
j=1

[
rT (t)Hjr(t)− (1− ηj)rT (t − τ̂j(t))

×Hjr(t − τ̂j(t))
]
+

N∑
j=1

τ̂jṙT (t)Bjṙ(t)

−

N∑
j=1

∫ t

t−τ̂j
ṙT (s)Bjṙ(s)ds.

Using Remark 1, the last integral term in the above inequal-
ity becomes

−

N∑
j=1

∫ t

t−τ̂j
ṙT (s)Bjṙ(s)ds =

N∑
j=1

[
−

∫ t−τ̂j(t)

t−τ̂j
ṙT (s)

×Bjṙ(s)ds−
∫ t

t−τ̂j(t)
ṙT (s)Bjṙ(s)ds

]

≤ ξT (t)
[ N∑
j=1

τ̂ j

(
NpjB

−1
j NT

pj +
1
3
NqjB

−1
j NT

qj

)
+sym(NpjE

j
1 + NqjE

j
2)

+

N∑
j=1

τ̂j(t)
(
MpjB

−1
j MT

pj +
1
3
MqjB

−1
j MT

qj

)

+sym(MpjE
j
3 +MqjE

j
4)
]
ξ (t),

where

E j1ξ = r(t − τ̂j(t))− r(t − τ̂j)),

E j2ξ = r(t − τ̂j(t))+ r(t − τ̂j))−
2

τ̂j − τ̂j(t)

∫ t−τ̂j(t)

t−τ̂j
r(s)ds,

E j3ξ = r(t)− r(t − τ̂j(t)), and

E j4ξ = r(t)+ r(t − τ̂j(t))−
2
τ̂j(t)

∫ t

t−τ̂j(t)
r(s)ds,

for j = 1, 2, · · · ,N . Then, we get

V̇1(r(t)) ≤ ξT (t)
(
41 +

N∑
j=1

τ̂ j

(
NpjB

−1
j NT

pj

+
1
3
NqjB

−1
j NT

qj

)

9 =



4

N∑
j=1

τ̂ jNpj
N∑
j=1

τ̂ j

3
Nqj

N∑
j=1

τ̂jMpj

N∑
j=1

τ̂j

3
Mqj h(t)Y T

? −

N∑
j=1

τ̂ jBj 0 0 0 0

? ? −

N∑
j=1

τ̂ j

3
Bj 0 0 0

? ? ? −

N∑
j=1

τ̂jBj 0 0

? ? ? ? −

N∑
j=1

τ̂j

3
Bj 0

? ? ? ? ? −h(t)Ū1



< 0, (16)
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+

N∑
j=1

τ̂j(t)
(
MpjB

−1
j MT

pj

+
1
3
MqjB

−1
j MT

qj

))
ξ (t), (18)

V̇2(r(t)) = −

 r(t − h)
ṙ(t − h)

r(t)− r(t − h)

T X̄
 r(t − h)

ṙ(t − h)
r(t)− r(t − h)


+

r(t)ṙ(t)
0

T X̄
r(t)ṙ(t)

0


+2

 ∫ t
t−h r(s)ds

r(t)− r(t − h)
hr(t)−

∫ t
t−h r(s)ds

T X̄
 0

0
ṙ(t)

 ,
= ξT (t)42ξ (t), (19)

V̇3(r(t)) = (tk+1 − t)rT (tk )R̄r(tk )− (t − tk )rT (tk )R̄r(tk ),

≤ (h− (t − tk ))rT (tk )R̄r(tk )

−(t − tk )rT (tk )R̄r(tk ),

= ξT (t)43ξ (t), (20)

V̇4(r(t)) = −2rT (tk )Ū2 [r(t)− r(tk )]− (t − tk )rT (tk )

Ū3r(tk )+ (h− (t − tk ))ηT2 (t)Ūη2(t)

−

∫ t

tk
ṙT (s)Ū1ṙ(s)ds.

Using Lemma 1, we obtain

−

∫ t

tk
ṙT (s)Ū1ṙ(s)ds

≤ −
1

t − tk
ξT (t)AT Ū1Aξ (t).

For any matrix Y , it is quite simple to obtain

1
t − tk

(
Ū1A− (t − tk )Y

)T Ū−11

(
Ū1A− (t − tk )Y

)
≥ 0.

Thus, we see that the following inequality is true.

−
1

t − tk

[
AT Ū1A

]
≤ −sym(Y TA)+ (t − tk )Y T Ū

−1
1 Y ,

where A = [e1 − e2N+4]. Therefore,

V̇4(r(t)) ≤ ξT (t)
(
44 + (t − tk )Y T Ū

−1
1 Y

)
ξ (t), (21)

V̇5(t) = h2ṙT (t)Rṙ(t)− h
∫ t

t−h
ṙT (s)Rṙ(s)ds. (22)

Using the Lemma 2, we get

−h
∫ t

t−h
ṙT (s)Rṙ(s) ds ≤ −ξT (t)

(
φT diag{R, 3R, 5R}φ

)
ξ (t),

where

φT = [e1 − e2N+3, e1 + e2N+3
−2e2N+5, e1 − e2N+3 − 6e2N+6] .

It follows from (22), we get

V̇5(r(t)) ≤ ξT (t)(h2ṙT (t)Rṙ(t)

+φT diag{R, 3R, 5R}φ)ξ (t),

V̇5(r(t)) ≤ ξT (t)45ξ (t). (23)

Given the error system (4), and any matrix G with suitable
dimensions and scalars ε1 > 0, ε2 > 0, it is possible to have
that

0 = 2
(
ε1rT (t)+ ε2ṙT (t)

)
× G

[
− ṙ(t)−Mr(t)+ Cg(r(t))

+

N∑
j=1

Wjg(r(t − τ̂j(t)))+ K̄ r(tk )
]

= ξT (t)46ξ (t). (24)

From (9), we can say that there exist diagonal matrices
F ≥ 0 and Fj ≥ 0, (j = 1, · · · ,N ) such that the subsequent
inequalities are satisfied:

2 [κ1r(t)− g(r(t))]T F [g(r(t))− κ2r(t)] ≥ 0,

2
N∑
j=1

[
κ1r(t − τ̂j(t))− g(r(t − τ̂j(t)))

]T Fj[
g(r(t − τ̂j(t)))− κ2r(t − τ̂j(t))

]
≥ 0. (25)

From the above inequalities (25), we have
ξT (t)47ξ (t) ≥ 0. (26)

Now, combining (18)-(26) with L = GK̄ and then using
Lemma 4 yields,

V̇ (r(t))− J (t) < ξT (t)
[ 7∑
m=1

4m +

N∑
j=1

τ̂ j

(
NpjB

−1
j NT

pj

+
1
3
NqjB

−1
j NT

qj

)
+

N∑
j=1

τ̂j(t)
(
MpjB

−1
j MT

pj

+
1
3
MqjB

−1
j MT

qj

)
+(t − tk )Y T Ū

−1
1 Y

]
ξ (t),

< ξT (t)9ξ (t),

V̇ (r(t)) < 0, (27)

where
ξ (t) = [rT (t), rT (t − τ̂1(t)), · · · , rT (t − τ̂N (t)), gT (r(t)),

gT (r(t − τ̂1(t))), · · · , gT (r(t − τ̂N (t))), rT (t − h), rT (tk ),∫ t

t−h

rT (s)
h

ds,
1
h

∫ t

t−h
δt−h,t (s)rT (s)ds, ṙT (t), ṙT (t − h),

rT (t − τ̂ ), l1, · · · , lN , l
1
, · · · , l

N
,wT (t)]T ,

δt−h,t (s) = 2
(
s− t + h

h

)
− 1,

l j =
1

τ̂ − τ̂j(t)

∫ t−τ̂j(t)

t−τ̂
rT (s)ds

and l
j
=

1
τ̂j(t)

∫ t

t−τ̂j(t)
rT (s)ds for j = 1, 2, · · · ,N .
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Since 9 < 0, there exists a small scalar ν > 0, such that
9 < −νI , then

V̇ (r(t))− J (t) ≤ −ν|ξ (t)|2 ≤ −ν|r(t)|2,

i.e., V̇ (r(t)) ≤ J (t)− ν|r(t)|2.

Considering w(t) = 0 yields

J (t) = yT (t)χ1y(t).

Noticing that χ1 ≤ 0 under Assumption (A3) yields that
V̇ (r(t)) ≤ −ν|r(t)|2. From this, it can be inferred that the
system (4) is quadratically stable.

Now, we consider the extended dissipativity condition for
the system. It can be seen that,

V̇ (r(t))− J (t) ≤ ξT (t)[9 +48]ξ (t),

V̇ (r(t))− J (t) ≤ 0. (28)

Now, integrating (28) on both sides from 0 to t , we have∫ t

0
J (s)ds ≥ V (r(t))− V (r(0)) ≥ rT (t)Pr(t)+ δ, (29)

where δ is chosen as δ = −V (r(0))−‖P‖ sup−τ̂j≤s≤0 |0(s)|
2.

The following two cases are essential to show that inequal-
ity (10) is valid. Therefore, we consider two cases as ‖χ4‖ =
0 and ‖χ4‖ 6= 0.
To begin with, if ‖χ4‖ = 0, then for any tf ≥ 0 (29) implies

that, ∫ tf

0
J (t)dt ≥ rT (tf )Pr(tf )+ δ ≥ δ. (30)

From this, it is evident that Theorem 1 holds well. If we
consider ‖χ4‖ 6= 0, as written in Assumption (A3), it can be
concluded that χ1 = 0, χ2 = 0 and χ3 > 0.
If tf ≥ t ≥ 0, then we get∫ tf

0
J (t)dt ≥

∫ t

0
J (s)ds ≥ rT (t)Pr(t)+ δ. (31)

When t > τ̂j(t), we get 0 < t − τ̂j(t) ≤ tf .
Thus,∫ tf

0
J (t)dt ≥

N∑
j=1

[rT (t − τ̂j(t))Pr(t − τ̂j(t))]+ δ. (32)

Furthermore, if t ≤ τ̂j(t), we get −τ̂j ≤ t − τ̂j(t) ≤ 0,
it could be verified that

δ +

N∑
j=1

[rT (t − τ̂j(t))Pr(t − τ̂j(t))]

≤ δ +

N∑
j=1

‖P‖|r(t − τ̂j(t))|2

≤ δ +

N∑
j=1

‖P‖ sup
−τj≤θ≤0

|0(θ )|2

= −V (r(0)) ≤
∫ tf

0
J (t)dt.

It is clear from the above that (32) holds for any tf ≥ t ≥ 0.
From (31) and (32), we can say that there is a scalar 0 < β <

1 satisfying∫ tf

0
J (t)dt ≥ δ + βrT (t)Pr(t)+ (1− β)

×

N∑
j=1

[rT (t − τ̂j(t))Pr(t − τ̂j(t))]. (33)

Noticing the fact that

yT (t)χ4y(t)

= −

N∑
j=1

[
r(t)

r(t − τ̂j(t))

]T
π

[
r(t)

r(t − τ̂j(t))

]

+βrT (t)Pr(t)+
N∑
j=1

(1− β)rT (t − τ̂j(t))Pr(t − τ̂j(t)),

for π > 0, then

yT (t)χ4y(t) ≤ βrT (t)Pr(t)

+

N∑
j=1

(1− β)rT (t − τ̂j(t))Pr(t − τ̂j(t)).

This shows that, for any t ≥ 0, tf ≥ 0, with tf ≥ t,∫ tf

0
J (t)dt ≥ yT (t)χ4y(t)+ δ.

Thus, (10) holds for any tf ≥ 0. According to the above
analysis, for ‖χ4‖ = 0 and ‖χ4‖ 6= 0, the error system
considered in (6) is extended dissipative. �
Theorem 2: Assume that (A1) and (A2) hold. For given

scalars h > 0, ηj > 0, τ̂j > 0, ε > 0, β > 0, ε1 >

0, ε2 > 0, matrices χl, l = 1, 2, 3, 4 satisfying (A3),
the error system (6) and (7) achieves quadratically stable
and extended dissipative, if there exist symmetric matrices
D = diag(d1, d2, · · · , dn) > 0,Hj > 0,Lj > 0,Bj > 0, X̄ ∈

R3n×3n > 0, R̄ > 0,R > 0,M > 0,P > 0, Ū =
[
Ū1 Ū2
? Ū4

]
,

Y > 0,A > 0,G > 0, any matrices Npj > 0,Nqj >
0,Mpj > 0,Mqj > 0 (j = 1, · · · ,N ) and positive diagonal
matrices F,F1, · · · ,FN such that the following LMIs hold
with h(t) = {0, h}:

π =

[
π11 π12

? π22

]
> 0,

ϒ1 = [

2N+2︷ ︸︸ ︷
0 · · · 0 H̄TGT 0 0 0 H̄TGT

2N+3︷ ︸︸ ︷
0 · · · 0]T ,

ϒ2 = [Ē

2N+5︷ ︸︸ ︷
0 · · · 0 Ē

2N+3︷ ︸︸ ︷
0 · · · 0],

46 = −e1ε1GeT2N+7 − e1ε1G
TMeT1 + e1ε1GCe

T
N+2 + e1

(ε1G
N∑
j=1

Wj)(eN+3)T + · · · + e1
(
ε1G

N∑
j=1

Wj
)
eT2N+2

−e2N+7ε2GeT2N+7 − e2N+7ε2GMe
T
1
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+e2N+7ε2GTCeTN+2 + e2N+7(ε2G
T

N∑
j=1

Wj)

eTN+3 + · · · + e2N+7(ε2G
T

N∑
j=1

Wj)eT2N+2,

and the other entries of 9 are defined in the same way as in
Theorem 1.Moreover, if the LMIs (34), as shown at the bottom
of the page is non-fragile synchronized, the desired controller
gain matrix is given by K̄ = G−1L.

Proof: The non-fragile controller is considered as given
below:

u(t) = (K̄ +1K̄ (t))r(tk ). (35)

Here, K̄ denotes the controller gain matrix to be found.
Here, 1K̄ (t) which is a real-valued matrix, denotes the con-
troller gain fluctuation. It can be assumed that 1K̄ (t) takes
the subsequent form:

1K̄ (t) = H̄1(t)Ē, (36)

where 1(t) ∈ Rk×l is the unknown time-varying matrix that
satisfies 1T (t)1(t) ≤ I . Here, H̄ and Ē are considered as
known matrices. Replace K̄ by K̄ + 1K̄ (t) in Theorem 1.
As proceeded in the proof of Theorem 1, here the following
can be obtained.

9 + ϒ11K̄ (t)ϒT
2 + ϒ21K̄T (t)ϒT

1 < 0. (37)

By Lemma 5, (37) is equivalent to

9 + ε−1ϒ1ϒ
T
1 + εϒ

T
2 ϒ2 < 0. (38)

Applying Lemma 4, it follows that (38) is equivalent
to (34). Hence, the theorem has been proved. �
Remark 3: Generally, synchronization designs with mul-

tiple time-varying delays, the extended dissipative case,
non-fragile and sampled-data control are not simply applied

to RNNs. Some research publications have tackled such
problems [10], [15], [19], [20], [22], [31]. However,
the authors used very simple LKFs to solve the stability
problems in these articles. A new LKF with the informa-
tion of multiple time-varying delays (0 ≤ τ̂j(t) ≤ τ̂j),
augmented LKF approach, and utilizing Polynomial-Based
Integral Inequality (PBII) technique have been proposed
for the quadratically stable and extended dissipativie anal-
ysis in this paper. Having this in consideration, some less
conservative results can occur in our method and it has
been provided in the numerical example section. However,
extended disspativity and non-fragile synchronization were
completely studied for RNNs with multiple time-varying
delays, which is the main contribution and motivation of our
work.
Remark 4: Computational complexity will be a fundamen-

tal issue in line with larger LMI size and more decision
variables. In our LMIs, the maximum number of decision
variables are used in Theorems 1 and 2. Moreover, a larger
LMIs size yields better performance. The newly introduced
integral techniques are used in the construction of proper
LKF to derive the results in Theorems, which produces tighter
bounds than the existing one like the reciprocally convex
approach, and so on. Maximum allowable bounds τ̂j and
sampling period h are less conservative than the existing ones
in the literature as seen in Table 1. In addition, the relaxations
of the derived results are obtained at the cost of multiple
decision variables. Having maximum allowable bounds τ̂j
yields an efficient result, but to minimize the computational
complexity burden, and time for computation, wewill be using
Finsler’s Lemma in our future work to reduce the number of
decision variables.

IV. SIMULATION RESULTS
In this part, we introduce simulation studies to demonstrate
the adequacy of the control scheme proposed and the merits

� =



4

N∑
j=1

τ̂ jNpj
N∑
j=1

τ̂ j

3
Nqj

N∑
j=1

τ̂jMpj

N∑
j=1

τ̂j

3
Mqj h(t)Y T ϒ1 εϒT

2

? −

N∑
j=1

τ̂ jBj 0 0 0 0 0 0

? ? −

N∑
j=1

τ̂ j

3
Bj 0 0 0 0 0

? ? ? −

N∑
j=1

τ̂jBj 0 0 0 0

? ? ? ? −

N∑
j=1

τ̂j

3
Bj 0 0 0

? ? ? ? ? −h(t)Ū1 0 0
? ? ? ? ? ? −εI 0
? ? ? ? ? ? ? −εI



< 0, (34)
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FIGURE 2. State trajectory of the system for L2 − L∞ performance in
Example 4.1.

of our methodology, in view of the conditions acquired in the
previous section.
Example 1: Consider the RNNswithmultiple time-varying

delays as given below:

ṙ(t) = −Mr(t)+ Cg(r(t))+
2∑
j=1

Wjg(r(t − τ̂j(t)))

+u(t)+ w(t), (39)

where

M =

[
5 0

0 4

]
, C =

[
1 0.4

−2 0.1

]
,

W1 =

[
0.5 0.7

0.7 0.4

]
,W2 =

[
0.3 0.2

0.1 0.6

]
.

Here Assumption (A2) is satisfied with the values s−1 =
−0.1, s+1 = 0.1, s−2 = −0.2, s

+

2 = 0.2. Assume that
h = 0.4 and the corresponding time-delays are taken as
τ̂1(t) = 0.3sin(t) + 0.2, τ̂2(t) = 0.1sin(t) + 0.6, τ̂1 =
0.5, τ̂2 = 0.7, β = 0.4, ε1 = 1.5, ε2 = 0.5. Hav-
ing these parameters in our consideration, MATLAB LMI
toolbox is used to solve the LMIs in Theorem 2, and then
we establish the subsequent parts of the extended dissipa-
tive conditions for the system (39). Moreover, the extended
dissipative condition contains L2 − L∞ performance, pas-
sivity, H∞ performance, mixed passivity and H∞ perfor-
mance and also (Q − S − R)-dissipativity as special cases.
The extended dissipative examination of system (39) is
concentrated here on the weighting matrices χ1, χ2, χ3,
and χ4.
L2 −L∞ performance: χ1 = 0, χ2 = 0, χ3 = γ̃ 2 I , χ4 =

I and δ = 0. By using the above parameters, we are able
to acquire the following control gain matrix K̄ by figuring
out the feasibility problem for the LMIs in Theorem 2 and
MATLAB LMI toolbox.

K̄ =

[
0.3435 0.0242

0.0213 0.0403

]
.

FIGURE 3. Control Response of the system L2 − L∞ performance in
Example 4.1.

FIGURE 4. State trajectory of the system for H∞ performance in
Example 4.1.

The state trajectories and the control response of the
system (39) under randomized initial conditions are seen
in Fig. 2 and Fig. 3 respectively. It is noted from Figs. 2 and 3
that the system state and control inputs of the system are able
to keep the system stable (converges to zero) and behaves
L2 − L∞ performance under the above mentioned param-
eter values, which indicates that the designed controller is
effective. Clearly, the simulation result demonstrates that the
suggested approach is feasible and efficient.
H∞ performance: χ1 = −I , χ2 = 0, χ3 = γ̃ 2 I , χ4 = 0,

and δ = 0. It can be easily estimated using the LMIs stated
in Theorem 2, and the resulting control gain matrix is

K̄ =

[
0.4211 0.0034

0.0352 0.0314

]
.

At the same time, the relative simulation shown
in Fig. 4 explains the subsequent evolution of the state
response curves with respect to the control gain matrix.
Fig. 5 shows the control response of the system (39). Thus,
the system under consideration performs well.
Passivity performance: χ1 = 0, χ2 = I , χ3 = γ̃ , χ4 =

0, and δ = 0. Now, the unified system examination turns to
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FIGURE 5. Control Response of the system for H∞ performance in
Example 4.1.

FIGURE 6. State trajectory of the system for Passivity performance in
Example 4.1.

the passivity performance. We get the following control gain
matrix by employing the MATLAB LMI toolbox to check the
LMIs in Theorem 2.

K̄ =

[
0.2832 0.0132

0.0335 0.0252

]
.

The subsequent simulation is also shown to validate the
result obtained from Fig. 6 and Fig. 7. Fig. 6 reflects the
resulting state responses under random initial conditions with
a distraction w(t). In Fig. 7 demonstrates the performance
of the control inputs that converges to zero as well as the
passivity performance of both figures is consistent with the
available parameters. All of these findings suggest that its
designed controller is powerful.
Mixed H∞ and Passivity performance:χ1 = γ̃−1αI , χ2 =

(1 = α)I , χ3 = γ̃ I , χ4 = 0 and α = 0.4. At this point,
the extended dissipativity performance reduces to the mixed
H∞ and passivity performance. Using MATLAB LMI toolbox
and solving LMIs in Theorem 2 helps in acquiring the control
gain matrix.

K̄ =

[
0.0734 0.3121

0.1521 0.3421

]
.

FIGURE 7. Control Response of the system for Passivity performance in
Example 4.1.

FIGURE 8. State trajectory of the system for Mixed H∞ and Passivity
performance in Example 4.1.

FIGURE 9. Control Response of the system for Mixed H∞ and Passivity
performance in Example 4.1.

With the randomized initial conditions, the dynamical
response of the state trajectories and control response of the
system (39) has been depicted in Fig. 8 and Fig. 9 and hence
shows mixed H∞ and passivity performance satisfying the
above stated parameters. It is possible to obtain that the built
controller performs well.
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FIGURE 10. State trajectory of the system for (Q− S−R) performance in
Example 4.1.

FIGURE 11. Control Response of the system for (Q− S−R) performance
in Example 4.1.

TABLE 1. Allowable maximum sampling period h when τ̂1 = 0.85.

(Q− S− R) Dissipativity: χ1 = Q, χ2 = S, χ3 = R− α̃I ,
and χ4 = 0 with

Q =

[
−1 0
0 −1

]
, S =

[
0.3 0
0.4 0.25

]
, R =

[
0.3 0
0 0.3

]
.

In the same manner, by solving the LMIs in Theorem 2 and
using the above parameters, the following is the gain matrix:

K̄ =

[
5.2126 0.0230

0.0425 2.2532

]
,

and the dissipativity performance is α̃ = 0.0072. Simulta-
neously, the relative simulation is demonstrated to verify the
obtained result from Fig. 10 and Fig. 11. Fig 10 represents the
corresponding state trajectories under the randomized initial
condition. In order to explore the simulation results of the

FIGURE 12. Chaotic behaviour of the master and slave system in
Example 4.2.

FIGURE 13. State trajectory of the system in Example 4.2.

controller input u(t), the initial condition is taken as [−5, 5]T .
Then, the control input for the dynamical system (39) has been
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FIGURE 14. Control responses in Example 4.2.

FIGURE 15. Error signals of the system in Example 4.2.

displayed in Fig. 11. Therefore, from the simulation results,
we accredit that the state trajectories and the control input
converges to zero. Thus, the (Q− S−R) dissipativity perfor-
mance requirement is satisfied. Therefore, Figs. 2-11 do not
only validate the stability region of the system (39), yet the
superiorities of our designed controller are also shown.
Example 2: Consider the following system (40) and

choose 0 ≤ τ̂1(t) ≤ τ̂1 with the parameters as given below:

ṙ(t) = −Mr(t)+ Cg(r(t))+W1g(r(t − τ̂1(t)))+ u(t),

M =
[
1 0
0 0.5

]
, C =

[
1.8 −0.15
−5.2 1.5

]
,

W1 =

[
−1.7 −0.12
−0.26 −2.5

]
. (40)

The activation functions are defined to be g1(x1) =
g2(x2) = tanh(x). The following can then be verified s−1 =
s−2 = 0, s+1 = s+2 = 1. We get the allowable maximum
sampling period h = 0.45 and τ̂1 = 0.72 with the selected
parameter values, which is shown in Table 1. By choosing
the randomized initial condition, the chaotic oscillator of the
master-slave NNs with u(t) = 0 are given in Fig. 12. The state
response of the controlled NNs (40) is depicted in Fig. 13.
Furthermore, the response curves of the control input and the
error signal are shown in Fig. 14 and Fig. 15. It is evident from
Fig. 15 that the error signals approach zero. This implies that

the master system synchronizes with the slave system under
the considered sampled-data controller.

V. CONCLUSION
In this paper, the extended dissipativity of RNNs with mul-
tiple time-varying delays has been studied via non-fragile
sampled-data control. A suitable LKF has been constructed
and the results have been derived to prove the quadrati-
cally stability and extended dissipativity of RNNs. Finally,
non-fragile technique along with the sampled-data controller
has been used to synchronize delayed neural networks.
The effectiveness of the controller design method has been
established by providing suitable simulation results. In the
future work, the proposed methods will be extended to
many famous dynamical models, such as synchronization of
T-S fuzzy NNs, switched Hopfield NNs, memristor NNs,
network-based event-triggered control, fractional-order NNs
and Markovian jump NNs. This will occur in the near future.
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