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Stabilization of Delayed Fuzzy Neutral-type Systems Under Intermittent
Control
R. Vadivel, S. Saravanan, B. Unyong, P. Hammachukiattikul, Keum-Shik Hong, and Gyu M. Lee* �

Abstract: This study is concerned about the stabilization for delayed fuzzy neutral-type system (DFNTS) with
uncertain parameters under intermittent control. Firstly, by constructing the augmented Lyapunov-Krasovskii func-
tional (LKF) about different time delays along with single and double auxillary function-based integral inequalities
(SAFBII, and DAFBII, respectively), a new class of delay-dependent adequate conditions are proposed, so that the
robust fuzzy neutral-type system under consideration is guaranteed to be globally asymptotically stable (GAS). Sec-
ondly, the intermittent control (IC) is introduced to stabilize the system with mixed time-varying delays. In the view
of inferred adequate conditions, the IC parameters are determined as for the arrangement of linear matrix inequal-
ities (LMIs). It is noted that the strategies exploited in this work are apart from the other methods engaged in the
literature, and the proposed conditions are less conservative. Finally, numerical examples are given to demonstrate
the effectiveness of the developed techniques in this work. One of the practical applications is single-link robot arm
(SLRA) model to show the viability and benefits of the structured intermittent control.

Keywords: Global asymptotic stability, intermittent control, linear matrix inequality, Lyapunov-Krasovskii func-
tional, time-varying delay.

1. INTRODUCTION

It is notable that delayed time-varying systems have
gotten a powerful research zone in the earlier years, es-
pecially for the time-delayed neutral-type system. This
time-delayed system contains time-delays both in its state
and in the derivatives of the states. This kind of sys-
tems have been referred to as time-delay neutral-type sys-
tem. Neutral-type systems are frequently encountered in
many dynamics, such that automatic control, in-stability,
oscillations, stability issue on time-delay systems has be-
come a topic of the great theoretic and practical impor-
tance [1–7]. Thus, the research on stability of such neu-
tral system proves to be of great significance [8–11]. For
example, in [12], L2 −L∞ filtering was adopted and a
delay-dependent stability condition for fuzzy neutral-type
stochastic system was proposed. Robust reliable guar-
anteed cost control was introduced to uncertain fuzzy
neutral-type system in [13]. Recently, H∞ filtering tech-
nique has been adopted to T-S fuzzy neutral-type stochas-
tic system in [14]. The authors in [16] discussed the prob-
lem of impulsive neutral-type systems based on the expo-

nential stabilization condition. In addition, the parameter
uncertainties in consideration of the model errors are un-
avoidable and lead to stochastic failures and abruption be-
sides developing inconveniences in the usage of models
[8,13,14].

On the other hand, fuzzy logic theory has been gen-
erally chosen for modelling complex nonlinear systems.
Among the various fuzzy logic models, the Takagi-
Sugeno (T-S) fuzzy pattern is popular because of its ca-
pability to model nonlinear systems as a group of linear
subsystems with the assistance of IF-THEN fuzzy rules
and fuzzy membership functions [12–15]. In addition, this
strategy has been quite specific and well-known for han-
dling the issues of some difficult nonlinear systems. Thus,
many scholars in the field of control carry out research
on T-S fuzzy systems from various aspects [17–19]. Re-
searchers in [20] studied robust static output feedback
H∞ control for uncertain fuzzy systems. In [21], robust
control of electrically driven robots has been discussed
for adaptive fuzzy estimation of uncertainty. In [22], au-
thors proposed finite-time L2-gain asynchronous control
for continuous-time positive hidden markov jump systems
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via T-S fuzzy model approach. Quite recently, in [23], the
stability and stabilization of T-S fuzzy systems have been
studied for two additive time-varying delays. In any case,
how to design delay terms in the intermittent control has
never been examined thoroughly in previously works, par-
ticularly in response to T-S fuzzy neutral-type model ap-
proach.

Meanwhile, many control approaches have been pro-
posed to stabilize nonlinear systems such as adaptive con-
trol [24], impulsive control [25], and intermittent control
[26–28] and so on. Intermittent control, as a discontinu-
ous control method, has been adopted in various engineer-
ing applications in view of its convenient implementation
in engineering control [29,30]. Recently, an intermittent
control scheme with both fixed control period and control
width, namely periodically intermittent control scheme,
has been developed to study various types of systems as
well as dynamical networks. For example, in [31], H∞

synchronization of uncertain stochastic time-varying de-
lay systems with exogenous disturbance through intermit-
tent control has been investigated. In [32] and [33], the au-
thors designed the aperiodic intermittent pinning control
and intermittent control for the synchronization of chaotic
systems. Authors in [34] investigated stabilization prob-
lem of stochastic uncertain complex-valued delayed net-
works with intermittent nonlinear control and references
cited therein. However, in practical applications, the re-
quirement that both control period and control width be
fixed is evidently unreasonable. It is obvious that ape-
riodically intermittent control is more feasible than the
periodically intermittent one. Intermittent control, which
was first introduced to control linear econometric models
in [26], has been widely used for a variety of purposes
such as manufacturing, transportation, and communica-
tion in practice. After several decades, numerous studies
with respect to intermittent control have been carried out
[26,29,31,33]. Moreover, modeling time-varying property
in control schemes can procure superior control execution
including time-varying delay state-feedback control [35].
It may change the estimation of delay in the controller
with the absence of control gain, which leads to extensive
consideration for the benefit of control execution in recent
years [36–38]. Thus, the results by utilizing intermittent
control (IC) method to explore the delayed fuzzy neutral-
type system (DFNTS) have not been thoroughly studied at
this point of research. This structural model is quite diffi-
cult to achieve but of great interests and attention, so that
it motivates this study.

In view of previously mentioned discussions, we focus
on the stabilization of delayed fuzzy neutral-type systems
with uncertain parameters under intermittent control. The
core contributions of this study can be summarized as fol-
lows:

(Q1) The neutral-type system is studied in terms of
the T-S fuzzy model under the consideration of mixed

time-varying delays and uncertainties to build up delay-
dependent criterion, such that the obtained closed-loop
system is GAS.

(Q2) By exploiting the augmented Lyapunov-
Krasovskii functional (LKF) technique, adequate con-
ditions for the stability analysis and controller plan of the
system under consideration are derived by means of well
established LMI approach.

(Q3) The less conservativeness of the proposed stabil-
ity criteria is achieved by incorporating the latest inte-
gral inequality approaches like single and double auxil-
lary function-based integral inequalities (SAFBII, DAF-
BII) to deal with the LKF derivatives (double, triple and
four integral terms), so that the obtained outcomes are
more applicable than the existing results in [8,9]. The
number of decision variables (NDVs) in this paper is
17∗n(n+1)/2, which is significantly smaller than that of
[9], 35∗n(n+1)/2. In addition, free weighting matrices
using the Finsler’s lemma are employed to make the pro-
posed technique less conservative.

(Q4) The intermittent controller is designed to stabilize
the considered DFNTS. In addition, the proposed stability
criteria suggest a connection between mixed delay in the
system and time delay in the controller. The obtained con-
ditions can be converted into LMIs, which is verified by
MATLAB LMI toolbox.

(Q5) Simulation examples are presented to demonstrate
the viability and less conservatism of the proposed ap-
proaches. In the application perspective, the obtained the-
oretical results and organized delayed intermittent con-
troller is validated through the single-link robot arm model
system.

This paper is organized as follows: Section 2 describes
the T-S fuzzy neutral-type model description and gives
theoretical background. The primary results for robust
neutral-type systems and the constructed controller are
summarized in Section 3. Simulation, application, and
comparison are described in Sections 4, 5, and 6, respec-
tively to demonstrate the adequacy and less conservatism
of the proposed approaches. Lastly, some conclusions are
given in Section 7.

Notation: Let Rn×q and Rn represent the set of all
n×q real valued matrices and n− dimensional Euclidean
space. The expressions X > 0 and X ≥ 0 denotes a posi-
tive definite and positive semi-definite matrices X , respec-
tively; the superscripts T and −1 indicate that the trans-
pose and inverse of a matrix. ∗ denotes the elements that
are introduced due to corresponding symmetry. Given a
matrix G of proper dimensions, H(G) = G+GT . Given
any set of matrices Ñi and M̃i of corresponding dimen-
sions and scalar functions h̃i, means that M̃h = ∑

i=1
r h̃iM̃i

and M̃hh = ∑
i=1
r ∑

j=1
r h̃ih̃ jM̃i j. Given any F ⊆ Q and Z ⊆

Q j(1 6= j 6= k), set C(F,Z) = {φ : F → Z is continuous}
and C1(F,Z)= {φ : F→ Z is continuously differentiable}.
The norm ‖φ‖ρ = sups∈[−ρ,0]{|φ(s)|, |φ̇(s)|} and AMD
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noted as admissible maximum delay.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the following delayed neutral-type uncertain
system, that can be approximated by the following IF-
THEN rules.

Plant Rule i:
IF z1(t) is ηi1, z2(t) is ηi2 and · · · and zp(t) is ηip,

THEN
u̇(t)− (Di +4Di(t))u̇(t−µ(t))

= (Ai +4Ai(t))u(t)

+(Bi +4Bi(t))u(t−ρ(t))+ Ēiw(t),

u(t) = φ(t), ∀t ∈ [−τ,0],

(1)

where i ∈ I = {1,2, ...,r} denotes the ith fuzzy rule and
r is the total number of rules; ηi1, ...,ηip denotes fuzzy
sets and z1(t),z2(t), ...,zp(t) indicates premise variables,
respectively. u(t)∈Rn is the state vector and u(t−ρ(t))∈
Rn is the delayed state vector; w(t) ∈Rn denotes the con-
trol input of the system; φ(t) indicates the initial condi-
tion, where τ ∈ max[ρ2,µ2]. Ai, Bi, Di, and Ēi are the
known real valued matrices of proper dimensions. Fur-
thermore, 4Ai(t), 4Bi(t), and 4Di(t) are time-varying
parameter uncertainties and defined as

[4Ai(t), 4Bi(t), 4Di(t)] = EbiFi(t)[χ̂1i, χ̂2i, χ̂4i],
(2)

where Ebi, χ̂1i, χ̂2i, and χ̂4i are known matrices, and the
uncertain matrix Fi(t) satisfies

FT
i (t)Fi(t)≤ I, ∀t ≥ 0. (3)

Denote

µ̂i(z(t)) =
p

∏
j=1

ηi j(z j(t)),

hi(z(t)) =
µ̂i(z(t))

∑
r
i=1 µ̂i(z(t))

≥ 0, (4)

where z(t) = [z1(t), ..., zp(t)]T and ηi j(z j(t)) are the
grades of membership z j(t) in ηi j. Then, µ̂i(z(t)) ≥
0 and ∑

r
i=1 µ̂i(z(t)) ≥ 0. Hence, we have hi(z(t)) ≥ 0

and ∑
r
i=1 hi(z(t)) = 1. Moreover, by fuzzy blending, the

neutral-type uncertain model can be approximated at a de-
sirable accuracy by

u̇(t) =
r

∑
i=1

hi(z(t))
{
(Ai +4Ai(t))u(t)

+(Bi +4Bi(t))u(t−ρ(t))

+(Di +4Di(t))u̇(t−µ(t))+ Ēiw(t)
}
. (5)

The parametric uncertainties 4Ai(t), 4Bi(t), and
4Di(t) are said to be admissible if both (2) and (3) hold.
The delays ρ(t) and µ(t) represent the time-varying de-
lay and the neutral delay, respectively, and satisfying
0≤ ρ1 ≤ ρ(t)≤ ρ2, ρ̇(t)≤ ρ , µ1 ≤ µ(t)≤ µ2, µ̇(t)≤ µ ,
ρa =

ρ3
2−ρ3

1
6 and ρb =

ρ2
2−ρ2

1
2 . With the presence of initial

values in system (5), the following intermittent controller
with delay term is defined as

w(t) =

{
K̂u(t−}), tk ≤ t < tk +dk,

0, t ∈ tk +dk ≤ t < tk+1,

where }> 0 indicates the constant delay, K̂ ∈Rm×n repre-
sent the gain matrix of the controller to be computed after-
wards, in which dk and tk+1− tk denotes control width and
control period respectively, which subjected to the follow-
ing restrictions

0 = t1 < t2 < · · ·< tk < · · · , lim
k→∞

tk =+∞,k ∈Z+.

At that point, the fuzzy intermittent controller is expressed
in the accompanying structure

Controller rule j:
IF z1(t) is ηi1, z2(t) is ηi2 and · · · and zp(t) is ηip, THEN

w(t) =


r

∑
j=1

h j(z(t))K̂ ju(t−}), tk ≤ t < tk +dk,

0, t ∈ tk +dk ≤ t < tk+1.

(6)

When the fuzzy intermittent control (6) is applied to (5),
therefore the above system can be rewritten as follows:

u̇(t) =
r

∑
i=1

hi(z(t))
r

∑
j=1

h j(z(t))
{
(Ai +4Ai(t))u(t)

+(Bi +4Bi(t))u(t−ρ(t))+(Di +4Di(t))

×u̇(t−µ(t))+ĒiK̂ ju(t−})
}
, tk≤ t< tk+dk,

u̇(t) =
r

∑
i=1

hi(z(t))
{
(Ai +4Ai(t))u(t)

+(Bi +4Bi(t))u(t−ρ(t))

+(Di+4Di(t))u̇(t−µ(t))
}
, tk+dk≤ t< tk+1.

(7)

Before presenting our main results, the following defini-
tions and instrumental lemmas are introduced to verify the
stability criteria for the closed-loop system.

Definition 1 [39]: DFNTS (7) is said to be globally
asymptotically stable (GAS) with respect to Lyapunov,
limt→∞ u(t) = 0 and φ ∈ C([−τ,0],Rn).

Definition 2 [28]: Given a constants ε > 0 and A >
0. The DFNTS (7) is called exponentially stable, for any
‖u(t)‖ ≤A‖φ‖τ e−εt ,∀ t ≥ 0, φ ∈ C([−τ,0],Rn), then the
solution u(t) of (7) is satisfied.
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Lemma 1 [2]: Let Z > 0 and for given scalars α and β ,
the following relation is well defined for any differentiable
function u in [α,β ]→Rn.

−
∫

β

α

u̇T (s)Zu̇(s)ds≤− 1
β−α

ϕ
T
1 Zϕ1−

3
β−α

ϕ
T
2 Zϕ2,

−
∫

β

α

∫
β

λ

u̇T (s)Zu̇(s)dsdλ ≤−2ϕ
T
3 Zϕ3−4ϕ

T
4 Zϕ4,

−
∫

β

α

∫
λ

α

u̇T (s)Zu̇(s)dsdλ ≤−2ϕ
T
5 Zϕ5−4ϕ

T
6 Zϕ6,

where

ϕ1 = u(β )−u(α),

ϕ2 = u(β )+u(α)− 2
β −α

∫
β

α

u(s)ds,

ϕ3 = u(β )− 1
β −α

∫
β

α

u(s)ds,

ϕ5 = u(α)− 1
β −α

∫
β

α

u(s)ds,

ϕ4 = u(β )+
2

β −α

∫
β

α

u(s)ds

− 6
(β −α)2

∫
β

α

∫
β

λ

u(s)dsdλ ,

ϕ6 = u(α)− 4
β −α

∫
β

α

u(s)ds

+
6

(β −α)2

∫
β

α

∫
β

λ

u(s)dsdλ .

Lemma 2 [27]: Let ξ̃ ∈Rn, G̃ ∈Rm×n and Q̃ = Q̃T ∈
Rn×n such that rank(G) < n. Then the following state-
ments are equivalent.

ξ̃
T Q̃ξ̃ < 0, ∀ξ̃ ∈ {ξ ∈Rn : ξ̃ 6= 0, G̃ξ̃ = 0}

∃R̃ ∈Rn×m : Q̃+H(R̃G̃)< 0.

Lemma 3 [3]: Let the matrices Σ̂1, Σ̂2 and Ω̂ of proper
dimensions be constant and 0≤ ρ1 ≤ ρ(t)≤ ρ2. Then the
inequality becomes

(ρ1−ρ(t))Σ̂1 +(ρ(t)−ρ2)Σ̂2 + Ω̂ < 0,

and holds if both the following relations hold:

(ρ2−ρ1)Σ̂1 + Ω̂ < 0,

(ρ2−ρ1)Σ̂2 + Ω̂ < 0.

Lemma 4 [17]: For (i, j) ∈ I2
r , let Γ̂i j be matrices of

appropriate dimensions, Γ̂i j < 0 is satisfied if both the fol-
lowing conditions hold:

Γ̂ii < 0, ∀i ∈ Ir,

2
r−1

Γ̂ii + Γ̂i j + Γ̂ ji < 0, ∀(i, j) ∈ I2
r , i 6= j.

3. MAIN RESULTS

In this section, we will present GAS criteria for DFNTS
(7) with intermittent controller. Based on the framework
of LKF and the newly improved integral inequality ap-
proaches, we give the robust stability conditions in the
following Theorems 1 and 2. Moreover, we consider the
block entry matrices ρ j = [0n×( j−1)n In×n 0n×(14n− j)n]

T ∈
R14n×n, for example: ρ5 = [0 0 0 0 I 0 0 0︸︷︷︸

9 times

]. For the con-

venience of presentation, we denote

θ̌(t) =
[

u(t)
∫ t

t−ρ1

u(s)ds
∫ t−ρ1

t−ρ2

u(s)ds

1
ρ1

∫ 0

−ρ1

∫ t

t+β

u(s)dsdβ

1
ρ2−ρ1

∫ −ρ1

−ρ2

∫ t

t+β

u(s)dsdβ

]T

,

ζ
T (t) =

[
u(t) u(t−ρ1) u(t−ρ(t)) u(t−ρ2)

1
ρ1

∫ t

t−ρ1

u(s)ds
1

ρ2−ρ1

∫ t−ρ1

t−ρ2

u(s)ds

1
ρ2

1

∫ 0

−ρ1

∫ t

t+β

u(s)dsdβ

1
(ρ2−ρ1)2

∫ −ρ1

−ρ2

∫ t

t+β

u(s)dsdβ

u̇(t) u̇(t−µ(t)) u(t−})∫ 0

−ρ2

∫ t

t+w
uT (s)dsdw

∫ −ρ1

−ρ(t)

∫ t

t+w
uT (s)dsdw

∫ −ρ(t)

−ρ2

∫ t

t+w
uT (s)dsdw

]T

.

Theorem 1: For given scalars ρ > 0, ρ1 >
0, ρ2 > 0, µ2 > 0, and µ > 0, the DFNTS
(7) is GAS, if for given constants γ̂ ≥ γ,γ >
0, ĉ ≥ 0, there exist positive definite matrices P ∈
R5n×5n, Q1, Q2, Q3, S1, S2, R1, R2, Z1, Z2, Z3, Z4, W1,
W2, W3 Ti, andN q

i j ∈R14n×n, such that the following LMI
conditions hold for both `= 1,2:

Γ̂
`
ii < 0,
2

r−1
Γ̂
`
ii + Γ̂

`
i j + Γ̂

`
ji < 0,

Γ̌
`
ii < 0, ∀i ∈ Ir,

2
r−1

Γ̌
`
ii + Γ̌

`
i j + Γ̌

`
ji < 0, ∀(i, j) ∈ I2

r , i 6= j
(8)

with

Γ̂
`
i j =


A11 (ρ2−ρ1)N `

i j ϒ̃T
1 ϒ̃T

2 ϒ̃T
3

∗ −(ρ2−ρ1)Q3 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε3

 ,
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Γ̌
`
i j =


B11 (ρ2−ρ1)N `

i j ϒ̃T
1 ϒ̃T

2 ϒ̃T
3

∗ −(ρ2−ρ1)Q3 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε3

 ,
and satisfy the subsequent relations for control width and
period

sup
k∈Z+

tk+1− tk−dk ≤ ĉ,

lim
k→∞

(γ̂tk− (γ + γ̂)
k−1

∑
l=1

dl) =−∞, k ∈ Z+, (9)

where

A11 =
8

∑
l=1

Φl +H(TiGi)+ Π̃,

B11 = Φ̂l +H(TiGi)+ Π̃,

Gi =
[
Ai 0 Bi 0 0 0 0 0 0 Di ĒiK̂ j 0 0 0

]
,

Φ1 = H(ϒT
1 Pϒ2)+ γ(ϒT

1 Pϒ1),

ϒ1 =
[
ρ1 ρ1ρ5 (ρ2−ρ1)ρ6 ρ1ρ7 (ρ2−ρ1)ρ8

]T
,

ϒ2 =
[
ρ9 ρ1−ρ2 ρ2−ρ4 ρ1−ρ5 ρ2−ρ6

]T
,

Φ2 = H(ρ1Z1ρ
T
9 )+ γρ1Z1ρ

T
1 +ρ

γρ1 ρ1Z2ρ
T
1

+ γρ1Z2ρ
T
1 −ρ2(Z4−Z2)ρ

T
2

+(1−ρ)eγρ1 ρ3(Z3−Z4)ρ
T
3

− eγρ1 ρ4Z2ρ
T
4 +ρ9Z5ρ

T
9 − (1−µ)eγρ

ρ10Z5ρ
T
10

+2ρ
T
9 R̂1ρ9 +ρ

T
1 AiR̂1ρ9 +ρ

T
3 BiR̂1ρ9

+ρ
T
9 DiR̂1ρ10 +ρ

T
9 R̃1ĒiK̂ρ11,

Φ3 = ρ9eγρ1(ρ2
1Q1+(ρ2−ρ1)

2Q2+(ρ2−ρ1)Q3)ρ
T
9

− eγρ1(ρ1−ρ2)Q1(ρ1−ρ2)
T

−3eγρ1(ρ1 +ρ2−2ρ5)Q1(ρ1 +ρ2−2ρ5)
T

− eγρ21(ρ2−ρ4)Q2(ρ2−ρ4)
T

−3(ρ2 + eγρ21 ρ4−2ρ6)Q2(ρ2 +ρ4−2ρ6)
T ,

Φ4 = ρ9eγρ1(
ρ2

1

2
(S1 +S2))ρ

T
9

−2eγρ1(ρ2−ρ5)S1(ρ2−ρ5)
T

−4eγρ1(ρ2−4ρ5 +6ρ7)S1(ρ2−4ρ5 +6ρ7)
T

−2eγρ1(ρ1−ρ5)S2(ρ1−ρ5)
T

−4eγρ1(ρ1 +2ρ5−6ρ7)S2(ρ1 +2ρ5−6ρ7)
T ,

Φ5 = ρ9eγρ1(
ρ2−ρ1

2
(R1 +R2))ρ

T
9

−2eγρ21(ρ4−ρ6)R1(ρ4−ρ6)
T

−4eγρ21(ρ4−4ρ6 +6ρ8)R1(ρ4−4ρ6 +6ρ8)
T

−2eγρ21(ρ2−ρ6)R2(ρ2−ρ6)
T

−4eγρ21(ρ2 +2e6−6ρ8)R2(ρ2 +2ρ6−6ρ8)
T ,

Φ6 = eγρ1ρ1

[
−ρ4

1

4
W1−

ρ4
2

4
W2−ρ

2
bW3−ρ

2
bW3

]
ρ

T
1

+ eγρ1

[
ρ1

(
ρ2

1

2
W1

)
ρ

T
7 −ρ7W1ρ

T
7

+ρ1

(
ρ2

2

2
W2

)
ρ

T
12−ρ12W2ρ

T
12 +ρ1(ρbW3)ρ

T
13

−ρ13W3ρ
T
13 +ρ1(ρbW3)ρ

T
14−ρ14W3ρ

T
14

]
,

Φ7 = H(N1
hh(ρ

T
3 −ρ

T
4 )+N2

hh(ρ
T
2 −ρ

T
3 )),

Φ8 = 2ρ
T
9 R̂1[ρ9 +Aiρ1 +Biρ3 +Diρ10 + ĒiK̂ρ11],

Φ̂l = Φ̂1 +
7

∑
i=2

Φi,

Φ̂1 = H(ϒT
1 Pϒ2)+ γ̂(ϒT

1 Pϒ1),

Φ̂8 = 2ρ
T
9 R̂1[ρ9 +Aiρ1 +Biρ3 +Diρ10],

Π̃ = ε1Γ̃
T
1 Γ̃1 + ε2Γ̃

T
2 Γ̃2 + ε3Γ̃

T
3 Γ̃3.

Proof: Choose an LKF candidate for system (7) as fol-
lows:

V (t) =
6

∑
r=1

Vr(t), (10)

V1(t) = θ̌
T (t)Pθ̌(t),

V2(t)

= uT (t)Z1u(t)+ eγ(s−t+ρ1)
[∫ t

t−ρ1

uT (s)Z2u(s)ds

+
∫ t−ρ(t)

t−ρ2

uT (s)Z3u(s)ds+
∫ t−ρ1

t−ρ(t)
uT (s)Z4u(s)ds

]
+
∫ t

t−µ(t)
eγ(s−t)u̇T (s)Z5u̇(s)ds,

V3(t)

= eγ(s−t+ρ1)

[
ρ1

∫ 0

−ρ1

∫ t

t+β

u̇T (s)Q1u̇(s)dsdβ

+
∫ −ρ1

−ρ2

∫ t

t+β

u̇T (s)((ρ2−ρ1)Q2+Q3)u̇(s)dsdβ

]
,

V4(t)

= eγ(s−t+ρ1)
[∫ 0

−ρ1

∫
λ

−ρ1

∫ t

t+β

u̇T (s)S1u̇(s)dsdβdλ

+
∫ 0

−ρ1

∫ 0

λ

∫ t

t+β

u̇T (s)S2u̇(s)dsdβdλ

]
,

V5(t)

= eγ(s−t+ρ1)
[∫ −ρ1

−ρ2

∫
λ

−ρ2

∫ t

t+β

u̇T (s)R1u̇(s)dsdβdλ

+
∫ −ρ1

−ρ2

∫ −ρ1

λ

∫ t

t+β

u̇T (s)R2u̇(s)dsdβdλ

]
,

V6(t)

=
ρ3

1

6

∫ 0

−ρ1

∫ 0

w

∫ 0

θ

∫ t

t+ξ

eγ(s−t+ρ1)u̇T(s)W1u̇(s)dsdξ dθdw
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+
ρ3

2

6

∫ 0

−ρ2

∫ 0

w

∫ 0

θ

∫ t

t+ξ

eγ(s−t+ρ2)u̇T(s)W2u̇(s)dsdξ dθdw

+ρa

∫ −ρ1

−ρ2

∫ 0

w

∫ 0

θ

∫ t

t+ξ

eγ(s−t+ρ1)u̇T(s)W3u̇(s)dsdξ dθdw.

The derivatives of Vl(t) with respect to t along the trajec-
tories of system (7), where l = 1, 2, ..., 6 yield

V̇ (t) =
6

∑
l=1

V̇l(t)< 0,

where

V̇1(t) = 2θ̇(t)Pθ
T (t) =−γV1(t)+ γθ

T (t)Pθ(t)

+2θ̇(t)Pθ
T (t)

= ζ
T (t)Φ1ζ (t),

V̇2(t)≤2uT (t)Z1u̇(t)+γuT (t)Z1u(t)+eγρ1 uT (t)Z2u(t)

− eγρ1 uT (t−ρ2)Z3u(t−ρ2)

+uT (t−ρ1)(Z4−Z2)u(t−ρ1)

+(1−ρ)eγρ1 uT (t−ρ(t))(Z3−Z4)u(t−ρ(t))

+ u̇T (t)Z5u̇(t)

− (1−µ3)eγρ u̇T (t−µ(t))Z5u̇(t−µ(t))

− γV2(t),

= ζ
T (t)Φ2ζ (t),

V̇3(t) = eγρ1 u̇T (t)(ρ2
1Q1 +(ρ2−ρ1)Q2

+(ρ2−ρ1)Q3)u̇(t)

− eγ(s−t+ρ1)
[
ρ1

∫ t

t−ρ1

u̇T (s)Q1u̇(s)ds−(ρ2−ρ1)

×
∫ t−ρ1

t−ρ2

u̇T (s)Q2u̇(s)ds

−
∫ t−ρ1

t−ρ2

u̇T (s)Q3u̇(s)ds
]
− γV3(t). (11)

From Lemma 1, we have

−ρ1

∫ t

t−ρ1

eγ(s−t+ρ1)u̇T (s)Q1u̇(s)ds

− (ρ2−ρ1)
∫ t−ρ1

t−ρ2

eγ(s−t+ρ1)u̇T (s)Q2u̇(s)ds

≤−eγρ1 [(ρ1−ρ2)Q1(ρ1−ρ2)
T

+3(ρ1 +ρ2−2ρ5)Q1(ρ1 +ρ2−2ρ5)
T ]

− eγρ21 [(ρ2−ρ4)Q2(ρ2−ρ4)
T

+3(ρ2 +ρ4−2ρ6)Q2(ρ2 +ρ4−2ρ6)
T ]. (12)

Therefore, from (11)-(12), we get

V̇3(t) = eγρ1 u̇T (t)(ρ2
1Q1 +(ρ2−ρ1)Q2

+(ρ2−ρ1)Q3)u̇(t)

− eγρ1 [(ρ1−ρ2)Q1(ρ1−ρ2)
T

+3(ρ1 +ρ2−2ρ5)Q1(ρ1 +ρ2−2ρ5)
T ]

− eγρ21 [(ρ2−ρ4)Q2(ρ2−ρ4)
T

+3(ρ2 +ρ4−2ρ6)Q2(ρ2 +ρ4−2ρ6)
T ]

+ eγ(s−t+ρ1)
∫ t−ρ1

t−ρ2

u̇T (s)Q3u̇(s)ds− γV3(t),

V̇3(t) = ζ
T (t)Φ3ζ (t)

−
∫ t−ρ1

t−ρ2

eγ(s−t+ρ1)u̇T (s)Q3u̇(s)ds− γV3(t),

(13)

V̇4(t) =
ρ2

1

2
eγρ1 u̇T (t)(S1 +S2)u̇(t)

−
∫ 0

−ρ1

∫
β

t−ρ1

eγ(s−t+ρ1)u̇T (s)S1u̇(s)dsdβ

−
∫ 0

−ρ1

∫ t

β

eγ(s−t+ρ1)u̇T (s)S2u̇(s)dsdβ−γV4(t).

(14)

Applying Lemma 1 in (14), we have∫ 0

−ρ1

∫ t+β

t−ρ1

eγ(s−t+ρ1)u̇T (s)S1u̇(s)dsdβ

+
∫ 0

−ρ1

∫ t

t+β

eγ(s−t+ρ1)u̇T (s)S2u̇(s)dsdβ

≤ 2eγρ1(ρ2−ρ5)S1(ρ2−ρ5)
T

+2eγρ1(ρ1−ρ5)S2(ρ1−ρ5)
T

+4eγρ1(ρ1−4ρ5 +6ρ7)S1(ρ1−4ρ5 +6ρ7)
T

+4eγρ1(ρ1 +2ρ5−6ρ7)S2(ρ1 +2ρ5−6ρ7)
T .

Such that, we get

V̇4(t)≤
ρ2

1

2
eγρ1 u̇T (t)(S1 +S2)u̇(t)−2eγρ1

[
(ρ2−ρ5)

×S1(ρ2−ρ5)
T +(ρ1−ρ5)S2(ρ1−ρ5)

T

+2(ρ1−4ρ5 +6ρ7)S1(ρ1−4ρ5 +6ρ7)
T

+2(ρ1 +2ρ5−6ρ7)S2(ρ1 +2ρ5−6ρ7)
T
]

− γV4(t),

V̇4(t)≤ζ
T (t)Φ4ζ (t)− γV4(t), (15)

V̇5(t) =
(ρ2−ρ1)

2

2
eγρ1 u̇T (t)(R1 +R2)u̇(t)

−
∫ −ρ1

−ρ2

∫ t+β

t−ρ2

eγ(s−t+ρ1)u̇T (s)R1u̇(s)dsdβ

−
∫ −ρ1

−ρ2

∫ t−ρ1

t+β

eγ(s−t+ρ1)u̇T (s)R2u̇(s)dsdβ

− γV5(t). (16)

Utilizing Lemma 1, it can be verified that

−
∫ −ρ1

−ρ2

∫ t+β

t−ρ2

eγ(s−t+ρ1)u̇T (s)R1u̇(s)dsdβ

≤−2eγρ21(ρ4−ρ6)R1(ρ4−ρ6)
T

−4eγρ21(ρ4−4ρ6 +6ρ8)R1(ρ4−4ρ6 +6ρ8)
T ,
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−
∫ −ρ1

−ρ2

∫ t−ρ1

t+β

eγ(s−t+ρ1)u̇T (s)R2u̇(s)dsdβ

≤−2eγρ21(ρ2−ρ6)R2(ρ2−ρ6)
T

−4eγρ21(ρ2 +2ρ6−6ρ8)R2(ρ2 +2ρ6−6ρ8)
T .
(17)

Therefore from (16)-(17), we get

V̇5(t)≤
(ρ2−ρ1)

2

2
eγρ1 u̇T (t)(R1 +R2)u̇(t)

−2eγρ21(ρ4−ρ6)R1(ρ4−ρ6)
T

−4eγρ21(ρ4−4ρ6 +6ρ8)R1(ρ4−4ρ6 +6ρ8)
T

−2eγρ21(ρ2−ρ6)R2(ρ2−ρ6)
T

−4eγρ21(ρ2 +2ρ6−6ρ8)R2(ρ2 +2ρ6−6ρ8)
T

− γV5(t),

V̇5(t)≤ ζ
T (t)Φ5ζ (t)− γV5(t),

V̇6(t) = u̇T(t)eγρ1

((
ρ3

1

6

)2
W1+

(
ρ3

2

6

)2
W2+ρ

2
aW3

)
u̇(t)

−ρ3
1

6

∫ 0

−ρ1

∫ 0

w

∫ t

t+θ

eγ(s−t+ρ1)u̇T(t)W1u̇(t)dsdθdw

−ρ3
2

6

∫ 0

−ρ2

∫ 0

w

∫ t

t+θ

eγ(s−t+ρ2)u̇T(t)W2u̇(t)dsdθdw

− eγ(s−t+ρ1)

× [ρa

∫ −ρ1

−ρ(t)

∫ 0

w

∫ t

t+θ

u̇T (t)W3u̇(t)dsdθdw

+ρa

∫ −ρ(t)

−ρ2

∫ 0

w

∫ t

t+θ

u̇T (t)W3u̇(t)dsdθdw]

− γV6(t). (18)

Utilizing Jensen’s inequality techniques, the above inte-
gral term (18) could be rewritten as

− ρ3
1

6

∫ 0

−ρ1

∫ 0

w

∫ t

t+θ

eγ(s−t+ρ1)u̇T (t)W1u̇(t)dsdθdw

≤−eγρ1

(
ρ2

1

2
u(t)−

∫ 0

−ρ1

∫ t

t+w
u(s)dsdw

)T

W1

×

(
ρ2

1

2
u(t)−

∫ 0

−ρ1

∫ t

t+w
u(s)dsdw

)

≤ ζ
T (t)eγρ1(ρ1

[
− ρ4

1

4
W1

]
ρ

T
1

+ρ1

(
ρ2

1

2
W1

)
ρ

T
7 −ρ7W1ρ

T
7 )ζ (t),

− ρ3
2

6

∫ 0

−ρ2

∫ 0

w

∫ t

t+θ

eγ(s−t+ρ2)u̇T (t)W2u̇(t)dsdθdw

≤ ζ
T (t)eγρ2(ρ1

[
− ρ4

2

4
W2

]
ρ

T
1 +ρ1

(
ρ2

2

2
W2

)
ρ

T
12

−ρ12W2ρ
T
12)ζ (t),

−ρa

∫ −ρ1

−ρ(t)

∫ 0

w

∫ t

t+θ

eγ(s−t+ρ1)u̇T (t)W3u̇(t)dsdθdw

≤ ζ
T (t)eγρ1(ρ1(−ρ

2
bW3)ρ

T
1 +ρ1(ρbW3)ρ

T
13

−ρ13W3ρ
T
13)ζ (t),

−ρa

∫ −ρ(t)

−ρ2

∫ 0

w

∫ t

t+θ

eγ(s−t+ρ1)u̇T (t)W3u̇(t)dsdθdw

≤ ζ
T (t)eγρ1(ρ1(−ρ

2
bW3)ρ

T
1 +ρ1(ρbW3)ρ

T
14

−ρ14W3ρ
T
14)ζ (t).

From (18) one can get

V̇6(t) = ζ
T (t)Φ6ζ (t)− γV6(t). (19)

Combining (11)-(19), we can obtain

ζ
T (t)

6

∑
i=0

Φiζ (t)

−
∫ t−ρ1

t−ρ2

eγ(s−t+ρ1)u̇T (s)Q3u̇(s)ds− γV (t)< 0.

(20)

Furthermore,
∫ t−ρ1

t−ρ2

u̇T (s)Q3u̇(s)ds can be written as with

the additive property of integration

−
∫ t−ρ1

t−ρ2

eγ(s−t+ρ1)u̇T (s)Q3u̇(s)ds

≤−eγ(s−t+ρ1)

×
[∫ t−ρ(t)

t−ρ2

u̇T(s)Q3u̇(s)ds+
∫ t−ρ1

t−ρ(t)
u̇T(s)Q3u̇(s)ds

]
.

Introduce the following equations:

u(t−ρ(t))−u(t−ρ2)−
∫ t−ρ(t)

t−ρ2

u̇(s)ds = 0,

u(t−ρ1)−u(t−ρ(t))−
∫ t−ρ1

t−ρ(t)
u̇(s)ds = 0.

For appropriate dimensional matrices N q
hh ∈ R14n×n (q ∈

1,2), (20) leads to

ζ
T (t)

6

∑
i=0

Φiζ (t)−
∫ t−ρ(t)

t−ρ2

eγ(s−t+ρ1)u̇T (s)Q3u̇(s)ds

−
∫ t−ρ1

t−ρ(t)
eγ(s−t+ρ1)u̇T (s)Q3u̇(s)ds

+2ζ
TN 1

hh

(
u(t−ρ(t))−u(t−ρ2)−

∫ t−ρ(t)

t−ρ2

u̇(s)ds
)

+2ζ
TN 2

hh

(
u(t−ρ1)−u(t−ρ(t))−

∫ t−ρ1

t−ρ(t)
u̇(s)ds

)
< 0. (21)

For any matrices Q3 = QT
3 > 0 the following inequalities

hold:

−2ζ
T (t)N 1

hh

∫ t−ρ(t)

t−ρ2

u̇(s)ds)
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≤ (ρ2−ρ(t))ζ T (t)N 1
hhQ−1

3 N 1
hh

T
ζ (t)

+
∫ t−ρ(t)

t−ρ2

eγ(s−t+ρ1)u̇T (s)Q3u̇(s)ds,

−2ζ
T (t)N 2

hh

∫ t−ρ1

t−ρ(t)
u̇(s)ds)

≤ (ρ(t)−ρ1)ζ
T (t)N 2

hhQ−1
3 N 2

hh
T

ζ (t)

+
∫ t−ρ1

t−ρ(t)
eγ(s−t+ρ1)u̇T (s)Q3u̇(s)ds. (22)

Case I: K̂ j 6= 0.
In addition, when tk ≤ t < tk +dk, we establish the fol-

lowing equation

r

∑
i=1

hi(z(t))
r

∑
j=1

h j(z(t)){2u̇T (t)R̂1(−u̇(t)+ u̇(t))}= 0,

r

∑
i=1

hi(z(t))
r

∑
j=1

h j(z(t)){−2u̇T (t)R̂1u̇(t)

+2u̇T (t)R̂1(Ai +4Ai(t))u(t)

+2u̇T (t)R̂1(Bi +4Bi(t))u(t−ρ(t))

+2u̇T (t)R̂1(Di +4Di(t))u̇(t−µ(t))

+2u̇T (t)R̂1ĒiK̂ ju(t−})}= 0. (23)

From (21), (22), and (23), the following inequality is writ-
ten as follows:

V̇ (t)≤− γV (t)+ζ
T (t)

6

∑
l=0

Φlζ (t)

+ζ
T (t)H(N 1

hh(ρ
T
3 −ρ

T
4 ))ζ (t)

+ζ
T (t)H(N 2

hh(ρ
T
2 −ρ

T
3 ))ζ (t)

+(ρ2−ρ(t))ζ T (t)N 1
hheγρ1Q−1

3 N
1
hh

T
ζ (t)

+(ρ(t)−ρ1)ζ
T (t)N 2

hheγρ1Q−1
3 N

2
hh

T
ζ (t)

+
r

∑
i=1

hi(z(t))
r

∑
j=1

h j(z(t))2ρ
T
9 R̂1

[
ρ9

+Ai(t)ρ1 +Bi(t)ρ3 +Di(t)ρ10 + ĒiK̂ jρ11
]
.

(24)

which implies

V̇ (t) =
r

∑
i=1

hi(z(t))
r

∑
j=1

h j(z(t))ζ T (t)Ψ̃i j(t)ζ (t)+ Ξ̃

− γV (t). (25)

with

Ψ̃i j(t) =
8

∑
l=1

Φl +(ρ2−ρ(t))ζ t(t)N 1
hhQ−1

3 N
1
hh

T
ζ (t)

+(ρ(t)−ρ1)ζ
T (t)N 2

hhQ−1
3 N

2
hh

T
ζ (t),

Ξ̃ = [δ̂1 δ̂2 δ̂3 δ̂4 δ̂5 δ̂6 δ̂7 δ̂8 δ̂9 δ̂10 δ̂11 δ̂12 δ̂13 δ̂14],

δ̂v = [

14 times︷︸︸︷
0 0 0 ]T ,v = 1,2, ...,8,11,12,13,14,

δ̂v = [(R14Ai(t))T 0 (R14Bi(t))T

11 times︷︸︸︷
0 0 0 ]T ,

δ̂v = [

9 times︷︸︸︷
0 0 0 (R14Di(t))T 0 0 0 0]T ,

and Φ7, Φ8, as given in (8). From (25), we can obtain

V̇ (t) =
r

∑
i=1

hi(z(t))
r

∑
j=1

h j(z(t))ζ T (t)Ψ̃i j(t)ζ (t)

+ Γ̃
T
1 Fi(t)ϒ̃1 + ϒ̃

T
1 FT

i (t)Γ̃1 + Γ̃
T
2 Fi(t)ϒ̃2

+ϒ̃
T
2FT

i (t)Γ̃2+Γ̃
T
3Fi(t)ϒ̃3+ϒ̃

T
3FT

i (t)Γ̃3−γV(t)

<0, (26)

where

Γ̃
T
1 = [ET

biR̂T
1

13 times︷ ︸︸ ︷
0 0 0],

Γ̃
T
2 = [0 0 ET

biR̂T
1

11 times︷ ︸︸ ︷
0 0 0],

Γ̃
T
3 = [

9 times︷︸︸︷
0 0 0 EbiR̂1 0 0 0 0],

ϒ̃1 = [

8 times︷︸︸︷
0 0 0 χ̂1i 0 0 0 0 0],

ϒ̃2 = [

8 times︷︸︸︷
0 0 0 χ̂2i 0 0 0 0 0],

ϒ̃3 = [

9 times︷︸︸︷
0 0 0 χ̂3i 0 0 0 0].

Moreover, let the neutral type T-S fuzzy model with inter-
val time-varying delays (7) can be written as

Giζ (t) = 0. (27)

From (26) and (27), considering Lemma 2 and DFNTS
(7) together leads to stability condition only if there exists
Th ∈ R14n×n such that

V̇ (t) =
r

∑
i=1

hi(z(t))
r

∑
j=1

h j(z(t))Ψ̃i j(t)+ Γ̃
T
1 Fi(t)ϒ̃1

+ ϒ̃
T
1 FT

i (t)Γ̃1 + Γ̃
T
2 Fi(t)ϒ̃2 + ϒ̃

T
2 FT

i (t)Γ̃2

+ Γ̃
T
3 Fi(t)ϒ̃3 + ϒ̃

T
3 FT

i (t)Γ̃3 +H(TiGi)− γV (t).
(28)

Utilizing Lemma 3, the above inequality (28) is satisfied
if and only if, ∀q ∈ I2

V̇ (t) =
8

∑
l=1

Φl+ε1Γ̃
T
1 Γ̃1+ε2Γ̃

T
2 Γ̃2+ε3Γ̃

T
3 Γ̃3+ε

−1
1 ϒ̃

T
1 ϒ̃1

+ ε
−1
2 ϒ̃

T
2 ϒ̃2 + ε

−1
3 ϒ̃

T
3 ϒ̃3 +H(TiGi)

+(ρ2−ρ1)N q
hhQ

−1
3 NqT

hh − γV (t). (29)
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Hence, using the Schur complement Lemma, the relation
(29) is similar to

V̇ (t) =


A11 (ρ2−ρ1)N q

hh ϒ̃T
1 ϒ̃T

2 ϒ̃T
3

∗ −(ρ2−ρ1)Q3 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε3I


− γV (t), (30)

where A11 = ∑
8
l=1 Φl + H(TiGi) + Π̃, Π̃ = ε1Γ̃T

1 Γ̃1 +
ε2Γ̃T

2 Γ̃2 +ε3Γ̃T
3 Γ̃3 and utilizing lemma 4, together with (8)

yields

V̇ (t) =−γV (t), t ∈ [tk, tk +dk). (31)

Let H1(t) = eγtV (t). By (31), one can see that H1(t) is a
monotone decreasing function on t ∈ [tk, tk +dk). Then,

H1(t)≤ H1(tk), H1(tk +dk)≤ H1(tk). (32)

Thus, we get

V (t)≤ e−γ(t−tk)V (tk), t ∈ [tk, tk +dk),

V (tk +dk)≤ e−γdkV (tk). (33)

Case II: K̂ j = 0.
When tk + dk ≤ t < tk+1, from the second equation of

system (7), it follows that

2u̇T (t)R̂1(−u̇(t)+ u̇(t)) = 0,

−2u̇T (t)R̂1u̇(t)−2u̇T (t)R̂1(Ai(t)+4Ai(t))u(t)

+2u̇T (t)R̂1(Bi(t)+4Bi(t))u(t−ρ(t))

+2u̇T (t)R̂1(Di +4Di(t))u̇(t−µ(t)) = 0. (34)

Since γ + γ̂ > 0, from (8), (21), (22) and (34), we obtain

V̇ (t)≤−γV (t)+ ˜̃
Σaa +(γ + γ̂)uT (t)Pu(t)

≤−γV (t)+ ˜̃
Σaa +(γ + γ̂)V (t)≤ γ̂V (t). (35)

Here,

˜̃
Σaa =


B11 (ρ2−ρ1)N q

hh ϒ̃T
1 ϒ̃T

2 ϒ̃T
3

∗ −(ρ2−ρ1)Q3 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε3I

 ,
B11 = Φ̂l +H(ThGh)+ Π̃, Φ̂1 = H(ϒT

1 Pϒ2)+ γ̂(ϒT
1 Pϒ1),

Φ̂l =
8

∑
l=2

Φl are defined in A11.

Let H2(t) = eγ̂(t)V (t). Then H2(t) is a monotone decreasing
function on t ∈ [tk +dk, tk+1) and we have

H2(t) = H2(tk +dk), H2(tk+1)≤ H2(tk +dk), (36)

which implies that

V (t)≤V (tk +dk)eγ̂(t−tk−dk), t ∈ [tk +dk, tk+1),

V (tk+1)≤V (tk +dk)eγ̂(tk+1−tk−dk). (37)

Thus combining (33) and (37), one may deduce that

V (tk+1)≤V (0)e−γ ∑
k
l=1 dl+γ̂(tk+1−∑

k
l=1 dl)

=V (0)eγ̂tk+1−(γ+γ̂)∑
k
l=1 dl ,

V (tk +dk)≤V (0)e−γ ∑
k
l=1 dl+γ̂(tk−∑

k
l=1 dl)

≤V (0)eγ̂tk−(γ+γ̂)∑
k−1
l=1 dl . (38)

When tk ≤ t ≤ tk +dk, it follows that from (33) and (38)

V (t)≤ e−γ(t−tk)V (tk)≤V (0)eγ̂tk−(γ+γ̂)∑
k−1
l=1 dl . (39)

When tk +dk ≤ t < tk+1, it follows from (9), (37), and (38)
that

V (t)≤ e−γ(t−tk)V (tk)≤V (0)eγ̂(t−tk−dk)V (tk +dk)

≤ e|γ̂|ĉV (0)eγ̂tk−(γ+γ̂)∑
k−1
l=1 dl . (40)

From (39) and (40), it can be verified that

V (t)≤ e|γ̂|ĉV (0)eγ̂tk−(γ+γ̂)∑
k−1
i=1 di , k ∈Z+, t ≥ 0. (41)

By the relation (9), we have limt→∞ V (t) = 0, which im-
plies that limt→∞ u(t) = 0. In what follows, we will derive
the GAS for system (7). Thus the proof is completed. �

Theorem 2: For given scalars ρ > 0, ρ1 > 0, ρ2 > 0,
µ2 > 0 and µ > 0, such that the robust DFNTS (7) is GAS,
if for given constants τk, k = 1, 2, ..., 17, γ̂ ≥ γ , γ > 0,
and ĉ ≥ 0, there exist positive definite matrices S, Z, and
N q

i j ∈ R14n×n, such that the following conditions hold, for
`= 1, 2:

Γ̂
`
ii < 0,
2

r−1
Γ̂
`
ii + Γ̂

`
i j + Γ̂

`
ji < 0,

Γ̌
`
ii < 0, ∀ i ∈ Ir,

2
r−1

Γ̌
`
ii + Γ̌

`
i j + Γ̌

`
ji < 0, (i, j) ∈ I2

r , i 6= j
(42)

with

Γ̂
q
i j =


Ξ̃11 (ρ2−ρ1)N `

i j ϒ̆T
1 ϒ̆T

2 ϒ̆T
3

∗ −(ρ2−ρ1)τ3S 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε3I

 ,

Γ̌
q
i j =


˜̃
Ξ11 (ρ2−ρ1)N `

i j ϒ̆T
1 ϒ̆T

2 ϒ̆T
3

∗ −(ρ2−ρ1)τ3S 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε3I

 ,
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where

Ξ̃11 =
7

∑
i=1

Φi +H(τ13SiGi)+ Π̃, ˜̃
Ξ11

= Φ̂l +H(τ13SiGi)+ Π̃,

Gi =
[
Ai 0 Bi 0 0 0 0 0 0 Di ĒiZ j 0 0 0

]
,

Φ1 = H(ϒT
1 Pϒ2)+ γ(ϒT

1 Pϒ1),

ϒ1 =
[
ρ1 ρ1ρ5 (ρ2−ρ1)ρ6 ρ1ρ7 (ρ2−ρ1)ρ8

]T
,

ϒ̆1 = [

8 times︷ ︸︸ ︷
0 0 0 ST

χ̂1i 0 0 0 0 0],

ϒ2 =

[
ρ9 ρ1−ρ2 ρ2−ρ4 ρ1−ρ5 ρ2−ρ6

]T

,

ϒ̆2 = [

8 times︷ ︸︸ ︷
0 0 0 ST

χ̂2i 0 0 0 0 0],

Φ2 = H(ρ1τ9Sρ
T
9 )+ρ1τ10Sρ

T
1 −ρ2(τ12S− τ10S)ρT

2

+(1−ρ)ρ3(τ11S− τ12S)ρT
3 −ρ4τ10Sρ

T
4

+ρ9τ8Sρ
T
9 − (1−µ3)ρ10τ8Sρ

T
10 +2ρ

T
9 τ14Sρ9

+ρ
T
1 Aiτ14Sρ9 +ρ

T
3 Biτ14Sρ9 +ρ

T
9 Diτ14Sρ10

+ρ
T
9 τ14ĒiZρ11,

Φ3 = ρ
2
1 τ1S+(ρ2−ρ1)

2
τ2S+(ρ2−ρ1)τ3S

− (ρ1−ρ2)τ1S(ρ1−ρ2)
T

−3(ρ1 +ρ2−2ρ5)τ1S(ρ1 +ρ2−2ρ5)
T

− (ρ2−ρ4)τ2S(ρ2−ρ4)
T

−3(ρ2 +ρ4−2ρ6)τ2S(ρ2 +ρ4−2ρ6)
T ,

Φ4 =
ρ2

1

2
(τ4S+ τ5S)−2(ρ2−ρ5)τ4S(ρ2−ρ5)

T

−4(ρ2−4ρ5 +6ρ7)τ4S(ρ2−4ρ5 +6ρ7)
T

−2(ρ1−ρ5)τ5S(ρ1−ρ5)
T

−4(ρ1 +2ρ5−6ρ7)τ5S(ρ1 +2ρ5−6ρ7)
T ,

Φ5 =
ρ2−ρ1

2
(τ6S+ τ7S)−2(ρ4−ρ6)τ6S(ρ4−ρ6)

T

−4(ρ4−4ρ6 +6ρ8)τ6S(ρ4−4ρ6 +6ρ8)
T

−2(ρ2−ρ6)τ7S(ρ2−ρ6)
T

−4(ρ2 +2ρ6−6ρ8)τ7S(ρ2 +2ρ6−6ρ8)
T ,

Φ6 = eγρ1ρ1

[
−ρ4

1

4
τ15S−ρ4

2

4
τ16S−ρ

2
bτ17S−ρ

2
bτ17S

]
ρ

T
1

+ eγρ1

[
ρ1

(
ρ2

1

2
τ15S

)
ρ

T
7 −ρ7τ15Sρ

T
7

+ρ1

(
ρ2

2

2
τ16S

)
ρ

T
12−ρ12τ16Sρ

T
12+ρ1(ρbτ17S)ρT

13

−ρ13τ17Sρ
T
13 +ρ1(ρbτ17S)ρT

14−ρ14τ17Sρ
T
14

]
,

Φ7 = H(N 1
hh(ρ

T
3 −ρ

T
4 )+N2

hh(ρ
T
2 −ρ

T
3 )),

ϒ̆3 = [

9 times︷ ︸︸ ︷
0 0 0 ST

χ̂3i 0 0 0 0],

Φ8 = 2ρ
T
9 τ14[ρ9 +Aiρ1 +Biρ3 +Diρ10 + ĒiZ jρ11],

Φ̂l =
7

∑
i=2

Φi,Φ̂1 = H(ϒT
1 Pϒ2)+ γ̂(ϒT

1 Pϒ1),

Φ̂8 = 2ρ
T
9 R̂1[ρ9 +Aiρ1 +Biρ3 +Diρ10].

Moreover, the gain matrices K̂ j = Z jS−1.

Proof: For tk ≤ t ≤ tk + dk and tk + dk ≤ t < tk+1, the
following conditions hold:

A11 (ρ2−ρ1)N q
hh ϒ̃T

1 ϒ̃T
2 ϒ̃T

3
∗ −(ρ2−ρ1)Q3 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε3

< 0, (43)


B11 (ρ2−ρ1)N q

hh ϒ̃T
1 ϒ̃T

2 ϒ̃T
3

∗ −(ρ2−ρ1)Q3 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε3

< 0. (44)

Let Q1 = τ1P, Q2 = τ2P, Q3 = τ3P, S1 = τ4P, S2 =
τ5P,R1 = τ6P, R2 = τ7P, R3 = τ8P, Z1 = τ9P, Z2 =
τ10P, Z3 = τ11P,Z4 = τ12P, Ti = τ13P, R̂1 = τ14P, W1 =
τ15P, W2 = τ16P, W3 = τ17P. Moreover S = P−1,Z j =
SK̂ j. Then performing congruence transformation to (43)

and (44) with diag{

15 times︷ ︸︸ ︷
P−1,P−1,P−1, I, I, I}, we obtain the

condition (42), which completes the proof. �

Remark 1: It ought to be noted that the suggested pro-
cedure in this article is easy to examine the stability of
designed system (7), can be possible to the designed con-
troller is also periodic.

Moreover, the control scheme w(t) can be treated in the
following way

w(t) =


r

∑
j=1

h j(z(t))K̂ ju(t−}), kz≤ t < kz+ δ̃ ,

0, t ∈ kz+ δ̃ ≤ t < (k+1)z,

(45)

where δ̃ and z > 0 indicate the width and period in the
controller approach, respectively. Therefore, system (7) is
described by

u̇(t) =
r

∑
i=1

hi(z(t))
r

∑
j=1

h j(z(t))
{
(Ai +4Ai(t))u(t)

+(Bi +4Bi(t))u(t−ρ(t))

+(Di +4Di(t))u̇(t−µ(t))

+ ĒiK̂ ju(t−})
}
, kz≤ t < kz+ δ̃ ,
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u̇(t) =
r

∑
i=1

hi(z(t))
{
(Ai +4Ai(t))u(t)

+(Bi +4Bi(t))u(t−ρ(t))

+(Di +4Di(t))u̇(t−µ(t))
}
,

kz+ δ̃ ≤ t < (k+1)z.

(46)

Corollary 1: For given scalars ρ > 0, ρ1 > 0, ρ2 > 0,
µ2 > 0, and µ , such that robust DFNTS (46) is exponen-
tially stable, if for given constants τk, k = 1, 2, ..., 17,
γ̂ ≥ γ , γ > 0, and ĉ ≥ 0, there exist positive definite ma-
trices S, Z, and N q

i j ∈ R14n×n, such that inequalities (42)
hold for both ` = 1, 2 and satisfy both control period and
width as

(γ + γ̃)δ̃ − γ̃z> 0. (47)

Proof: When kz≤ t < kz+ δ̃ , based on (39) and (47)

V (t)≤V (0)eβkz−(γ+γ̃)(k−1)δ̃

=V (0)e(γ+γ̃)δ̃+(γ̃z−(γ+γ̃)δ̃ )k

=C1V (0)e(γ̃z−(γ+γ̃)δ̃ ) t−γ̃

z , (48)

where C1 = e(γ+γ̃)δ̃ . When kz+ δ̃ ≤ t < (k+ 1)z, based
on (40) and (47), we get

V (t)≤ e|γ̃|ĉV (0)eβkz−(γ+γ̃)(k−1)δ̃

=V (0)e|γ̃|ĉ+(γ+γ̃)δ̃+(γ̃z−(γ+γ̃)δ̃ )k

=C2V (0)e(γ̃z−(γ+γ̃)δ̃ ) t
z , (49)

where C1 = e|γ̃|ĉ−γ̃z+2(γ+γ̃)δ̃ . Together with (48) and (49),
it implies that

V (t)≤C2V (0)e−2ς(t−δ̃ ),

where ς = (γ+γ̃)δ̃+γ̃z
2z > 0. Let

C3 =λmax(P)+λmax(Z1)+ρ1e2γρ1 λmax(Z2)

+ρ2eγρ1 eγρ2 λmax(Z3)+ρ1e2γρ1 λmax(Z4)

+µeγµ
λmax(Z5)+ρ

2
1 e2γρ1 λmax(Q1)

+
(ρ2−ρ1)

3

2
eγρ1 eγρ21 λmax(Q2+Q3)

+
ρ3

1

3
e2γρ1 λmax(S1)+

ρ3
1

3
eγρ1 λmax(S2)

+
(ρ2−ρ1)

3

3
eγρ1 eγρ21 λmax(R1)

+
(ρ2−ρ1)

3

3
eγρ1 eγρ21 λmax(R2)

+
(ρ1)

3

6
(ρ1)

4

4
e2γρ1 λmax(W1)

+
(ρ2)

3

6
(ρ2)

4

4
e2γρ2 λmax(W2)

+
(ρ2−ρ1)

4

4
ρaeγρ1 eγρ21 λmax(W3),

we get

V (t)≥ λmin(P)||y(t)||2, V (0)≤C3||φ ||2ρ .

Thus,||y(t)||≤C4||φ ||ρ e−ςt , where C4=eς δ̃
√

C2C3/λmin(P).
This completes the proof. �

If there is no control input in (7) and without fuzzy rules,
that is to say, Ē = 0; then the following Corollary 2 can be
obtained easily.

Corollary 2: For given scalars ρ > 0, ρ1 > 0, ρ2 > 0,
µ2 > 0 and µ > 0, the neutral-type system (7) without
control input is GAS, if for given constants γ̂ ≥ γ , γ > 0,
and ĉ ≥ 0, there exist real positive definite matrices P ∈
R5n×5n, Q1, Q2, Q3, S1, S2, R1, R2, Z1, Z2, Z3, Z4, T,
and N ∈ R9n×n, such that the subsequent inequalities are
satisfied

A11 (ρ2−ρ1)N ϒ̃T
1 ϒ̃T

2 ϒ̃T
3

∗ −(ρ2−ρ1)Q3 0 0 0
∗ ∗ ε1I 0 0
∗ ∗ ∗ ε2I 0
∗ ∗ ∗ ∗ ε3

< 0. (50)

Proof: Let Ē = 0 in Theorem 1, we get the asymptotic
stability criterion for system (7). The proof is similar to
that of Theorem 1 and is omitted for brevity. �

Remark 2: The intermittent controller configuration
is formulated by LMIs in Theorem 2 and these condi-
tions might be solved proficiently via MATLAB Toolbox.
Subsequently, the mode-dependent fuzzy intermittent con-
troller is simple to be constructed as in Theorem 2.

Remark 3: Compared with the earlier works [30],
[32], and [34], whose work/rest time is periodic, it is
adopted to achieve the objective of stability. However, the
limitation of periodicity is very short so that the feasibil-
ity is limited in the real life problem. In this paper, we
focus on the delayed intermittent control with period for
the stability of the T-S fuzzy system. Therefore, the anal-
ysis technique and system model proposed in this paper is
more general than [30,32,34]

Remark 4: The computational complexity is a primary
issue that is subject to how large the LMIs are and how
many decision variables are. However, LMIs of large size
yield better performance. The results in Theorems are de-
rived by constructing proper L-K functionals with dou-
ble, triple, and four integral terms, and using a newly
introduced integral inequality technique which produces
tighter bounds than the existing ones including recipro-
cally convex approach and etc. In this paper, the proposed
criteria employs several integral inequalities; as a result,
some degree of high computational complexity can occur
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in the proposed criterion. It is noted that the obtained max-
imum allowable bounds ρ2 are less conservative than the
existing ones in the literature, as shown in Table 4 and
Table 5. Finsler’s lemma was applied in the proof of the
main results, which in turn to reduce the computational
burden. Moreover, in the future work we will focus on
lower computational complexity of the stability problems
while maintaining the desired system performances.

4. SIMULATION RESULTS

In the view of the conditions acquired in the previous
section, we present some simulation examples to demon-
strate the adequacy of the proposed control scheme and
the merits of our approach in this section.

Example 1: Consider the following T-S fuzzy uncer-
tain neutral-type system with time-varying delays

u̇(t) =
r

∑
i=1

hi(z(t))
{
(Ai +4Ai(t))u(t)

+(Bi +4Bi(t))g(u(t−ρ(t)))

+(Di +4Di(t))u̇(t−µ(t))+ Ēiw(t)
}
,

with two IF-THEN rules (r = 2) and the following param-
eters:

A1 =

[
−1 −3.1321
1 −2

]
, A2 =

[
−3.6 −1.1321

1 −2.8

]
,

B1=

[
0.2 −0.4
0.5 1.1

]
, B2=

[
0.2 −0.3
0.6 1.3

]
, Ē1=

[
0

0.25

]
,

D1 =

[
0.9 0.2
0.1 0.4

]
, D2 =

[
0.2 0.5
0.2 0.3

]
, Ē2 =

[
0

0.3

]
,

χ̂11 = χ̂12 =

[
0.2 0
0 0.2

]
, χ̂21 = χ̂22 =

[
0.1 0
0 0.1

]
,

χ̂41= χ̂42=

[
0.25 0

0 0.25

]
, Eb1=Eb2=

[
0.1 0
0 0.1

]
.

The membership functions of rules 1 and 2 are h1(u) =
1

exp(−2u(t)) and h2(u) = 1− h1(u), respectively. Moreover,
the other parameters involved in this simulation are se-
lected as follows: ρ1 = 0.1, ρ2 = 0.25, ρ = 0.15, µ2 = 0.4,
µ = 0.11, γ = γ̃ = 0.1, ĉ = 0.2, dk = 1.85 and τk = 0.2
(k= 1, ..., 17). In order to stabilize the concerned uncertain
T-S fuzzy uncertain neutral-type system (7) under consid-
eration, we design the more generalized intermittent con-
troller as mentioned in (6) with the above given param-
eters. For this purpose, solving the LMIs in Theorem 2
with the above parameters utilizing Matlab LMI tool box,
we obtain the following gain matrix of the control law

K̂1 =
[

0.3577 −2.5342
]
,

K̂2 =
[

2.1324 −6.8743
]
.

To further show the effectiveness of the designed inter-
mittent control, simulations have been carried out. The

0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

8

t/sec

S
ta

te
 r

e
s
p

o
n

s
e

s

 

 
u1
u2

Fig. 1. Evolution of open-loop system in Example 1.
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Fig. 2. Evolution of the system state in Example 1.

Table 1. AMD ρ2 for various values of } in Example 1.

} 0.01 0.03 0.05 0.06 0.07
ρ2 0.2314 0.1752 0.0553 0.0242 0.0031

corresponding state responses of the neutral-type system
(7) are presented in Figs. 1 and 2. The numerical simula-
tion of system neutral-type (7) with controller w(t) = 0 is
depicted in Fig. 1, which shows the performance of unsta-
ble system. Based on the modeled IC (6), Fig. 2 exhibits
the evolution of the system state under the initial condi-
tion [−3, 5]T , from which we can see that the closed loop
fuzzy system (7) is GAS. The response curve of the con-
trol input is plotted in Fig. 3. Fig. 4 displays a flowchart
to calculate the controller gains. Moreover, the allowable
bound of ρ2 for different values of } and allowable bound
of ρ2 for different values of ρ respectively, are displayed
in Tables 1 and 2. Based on the simulation results, it is
demonstrated that the proposed intermittent controller per-
forms well.
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Fig. 3. Evolution of the control responses in Example 1.

No 

Model the system (7) as T-S fuzzy 
delayed Intermittent control system 

Select the parameters in 
Theorem 2 

Check the 
feasibility of LMis 

in Theorem 2 

Based on LMis ( 42) the gain of 
controller has been obtained 

Fig. 4. A flowchart to calculate the controller gains.

Table 2. AMD ρ2 for various values of ρ in Example 1.

ρ 0.01 0.03 0.05 0.07 0.1
ρ2 0.2163 0.1935 0.1572 0.0931 0.0563

5. APPLICATIONS

In this section, an illustrative model of single-link robot
arm (SLRA) system in [40] and [41] is explained to
demonstrate the effectiveness of the designed methodol-
ogy. Furthermore, for the simulation purpose, the certain
parameters of the SLRA are summarized in the following
Table 3.

1) Design example of single-link robot arm system:

η̈(t) =− ĝL̂M̂
Ĵ

sin(η(t))− R̂
Ĵ

η̇(t)+
1
Ĵ

w(t). (51)

Table 3. Parameters of the SLRA model.

Symbol Value
M̂ (mass of the load) 1 kg
Ĵ (moment of inertia) 1 kg m2

R̂ (damping coefficient) 2 N m/rad
L̂ (value of the length) 0.5 m

ĝ (acceleration of gravity) 9.81 m/s2

λ (retarded coefficient) 0.8 N m/rad

Defining u1(t) = η(t) and u2(t) = η̇(t), to deal with the
time delay in the system, we get

u̇1(t) = λu2(t)+(1−λ )u2(t−ρ(t)),

u̇2(t) =−
ĝL̂M̂

Ĵ
sin(u1(t))−λ

R̂
Ĵ

u2(t)

− (1−λ )R̂
Ĵ

u2(t−ρ(t))+
1
Ĵ

w(t),

where η(t) and η̇(t) represent the robot arm angle
and robot arm angular velocity, respectively. The non-
linear term sin(u1(t)) can be denoted as: sin(u1(t)) =
h1(u1(t)).u1(t) + h2(u1(t)) · β̃ · u1(t), where h1(u1(t)) +
h2(u1(t)) = 1, h1(u1(t)),h2(u1(t)) ∈ [0,1]. The above
equations can be solved and we get the following mem-
bership function

h1(u1(t)) =


sin(u1(t))− β̃u1(t)

(1− β̃ )u1(t)
, u1(t) 6= 0,

1, u1(t) = 0,

h2(u1(t)) = 1−h1(u1(t)),

where u1(t) ∈ (−π,π) and β̃ = 0.01/π .

2) T-S fuzzy modelling:
The SLRA system can be implemented by the subse-

quent T-S fuzzy model:
Plant rule 1: IF u1(t) is about 0 rad, THEN

u̇(t) =(A1 +4A1(t))u(t)

+(B1 +4B1(t))u(t−ρ(t))+ Ē1w(t).

Plant rule 2: IF u1(t) is about ± rad, THEN

u̇(t) =(A2 +4A2(t))u(t)

+(B2 +4B2(t))u(t−ρ(t))+ Ē2w(t),

where u(t) = [uT
1 (t) uT

2 (t)]
T ,

A1 =

[
0 λ

− ĝL̂M̂
Ĵ − λ R̂

Ĵ

]
, A2 =

[
0 λ

− β ĝL̂M̂
Ĵ − λ R̂

Ĵ

]
,

B1 = B2 =

[
0 (1−λ )

0 − (1−λ )R̂
Ĵ

]
, E1=E2=

[
0

1
Ĵ

]T
,
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Fig. 5. Evolution of the system state in SLRA model.

[4Ai(t), 4Bi(t)] = EbiFi(t)[χ̂1i, χ̂2i],

Eb1 = 0.01, Eb2 = 0.02,

F1(t) = 0.5sin(t), F2(t) =−0.5cos(t),

χ̂11 =

[
0.01 0

0 0.02

]
, χ̂12 =

[
0.01 0

0 0.03

]
,

χ̂21 =

[
0.02 0

0 0.02

]
, χ̂22 =

[
−0.01 0

0 0.03

]
.

Utilizing the above parameters and setting ρ1 = 0.1, ρ2 =
0.2, ρ = 0.2, dk = 1.85 by using the Matlab LMI con-
trol toolbox to solve the LMIs in Theorem 2 without
neutral-type, i.e., (Di+∆i(t)) = Z5 = 0, we get the follow-
ing feedback control gain matrices K̂1 = [1.3563 2.1032]
and K̂2 = [2.3640 3.5322]. Fig. 5 represents the state re-
sponses of variables u1(t) and u2(t) with an initial condi-
tion u(t) = [5, −5]T , indicating that the evolution of the
system converges to an equilibrium point. Fig. 6 depicts
the state responses of the SLRA system. It is clear that the
system is destabilize, i.e, without controller. Under zero
initial condition, Fig. 7 shows the control input of the sys-
tem. Referring to these figures, it can be observed that the
proposed method has been effectively and applicability.

6. A COMPARISON EXAMPLE

In the previous section, we have validated the derived
sufficient condition with single-link robot arm system. In
order to prove the conservatism of the derived condition,
we have considered the system

u̇(t)−Du̇(t−µ(t)) =(A+4A(t))u(t)
+(B+4B(t))u(t−ρ(t)),

(52)

where the system parameters are given as

A=

[
−2 0
0 −1

]
, B =

[
−1 0
−1 −1

]
,D =

[
c 0
0 c

]
,
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Fig. 6. Evolution of the open-loop system state in SLRA
model.
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Fig. 7. Evolution of the control response in SLRA model.

where 4A(t) and 4B(t) are of the form in (52) with
χ̂1 = diag{160 ,1.25}, χ̂2 = χ̂4 = diag{10 ,7.5}. In or-
der to compare the conservativeness of Corollary 2 with
those of some previous works, the parameters from Ex-
ample 4.3 of [11] have been used. For given µ(t) = µ

and ρ = 0.1, the maximum allowable delay ρ2 provided
by proposed stability criteria is listed in Table 4. When
c = 0.1 and different values of µ , Table 5 shows com-
pared results of the upper bound of ρ2 with the ones in
[4,9–11]. By using Corollary 2 and the Matlab LMI Tool-
box, Tables 4 and 5 give the obtained maximum allowable
ρ2, such that the considered system is admissible. Form
these tables, we can see that the proposed stability crite-
rion for uncertain neutral-type system is less conservative
than the existing results. It shows the effectiveness of the
methods presented in this paper.

7. CONCLUSION

In this paper, the delayed intermittent control for T-
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Table 4. Maximum allowable upper bounds (MAUBs) ρ2 for different values of c, such that ρ1 = 0 and ρ = 0.1.

c 0 0.1 0.2 0.3 0.4 0.5 0.6
[9] 1.166 0.962 0.778 0.616 0.472 0.346 0.235

[10] 1.172 0.966 0.780 0.618 0.473 0.347 0.235
[4] 1.177 0.971 0.786 0.622 0.478 0.349 0.235

[11] 1.275 1.033 0.821 0.638 0.482 0.349 0.235
Corollary 2 1.464 1.286 1.251 0.932 0.876 0.575 0.242

Table 5. Maximum allowable upper bounds (MAUBs) ρ2 for different values of ρ with c=0.1.

lower bound ρ 0.1 0.3 0.5 0.7 0.9
ρ1 = 0 [9] 0.962 0.907 0.850 0.789 0.714

[4] 0.971 0.960 0.960 0.960 0.960
[11] 1.033 0.984 0.980 0.979 0.979

Corollary 2 1.162 1.085 1.083 0.986 0.986
ρ1 = 0.5 [9] 0.962 0.907 0.850 0.793 0.793

[10] 0.966 0.922 0.895 0.891 0.889
[4] 0.971 0.961 0.961 0.961 0.961

[11] 1.118 1.043 1.041 1.041 1.041
Corollary 2 1.264 1.213 1.102 1.062 1.062

S fuzzy neutral-type system is studied with mixed time-
varying delays and uncertainties. The physical plant of the
system is represented as an average weighted sum of lo-
cal linear subsystems and the weighting terms are charac-
terized by the membership functions. By constructing an
augmented LKF and handling some new integral inequal-
ity techniques like SAFBII and DAFBII as well as, some
sufficient conditions, we have established GAS criteria for
the considered fuzzy neutral-type systems. Moreover, the
gains of the delayed intermittent controller are derived by
solving a set of LMIs, which can be solved by MATLAB
LMI toolbox. Finally, numerical examples are also pre-
sented to validate the theoretical results of this study and
in addition, the developed methodology has been tested
on a practical single-link robot arm model. The limita-
tion of the proposed method is the introduction of relax-
ation variables, which increases the computational com-
plexity. However, it is necessary to expand the feasible re-
gion of the result and obtain more feasible solutions at
the same time, we sometimes need to introduce the re-
laxation variables. If the conditions have a feasible solu-
tion, the controller feedback matrices can be calculated
according to the feasible solutions of a set of LMIs. It is
worth to note that the results of this paper is compared
with the existing ones in the literature. Less conserva-
tive results can be obtained by using the new method pro-
posed in this paper. The method in this work can be used
to deal with more complicated problems such as filter-
ing design, observer design, external disturbances (dissi-
pativity, passivity, H∞ performance) and distributed event-
triggered scheme to save computational efforts. Addition-
ally, more complex systems, including stochastic nonlin-

ear systems based on hidden Markovian model and semi-
Markovian model stochastic nonlinear systems are inter-
esting research topics and will be additionally examined
in our future works.
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