:‘) Available online at www.sciencedirect.com

gt ScienceDirect MATHEMATICS

w
IN SIMULATION

e TN =
ELSEVIER Mathematics and Computers in Simulation 201 (2022) 508-527 _——
www.elsevier.com/locate/matcom

Original articles

Existence, uniqueness and global stability of Clifford-valued
neutral-type neural networks with time delays

G. Rajchakit™”, R. Sriraman®, C.P. Lim‘, B. Unyong"’

2 Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, 52290, Thailand
b Department of Mathematics, Thiruvalluvar University, Vellore, Tamil Nadu 632 115, India
¢ Institute for Intelligent Systems Research and Innovation, Deakin University, Waurn Ponds, VIC 3216, Australia
d Department of Mathematics, Phuket Rajabhat University, 83000, Phuket, Thailand

Received 17 December 2020; received in revised form 7 February 2021; accepted 26 February 2021
Available online 5 March 2021

Abstract

In this paper, we analyze the global asymptotic stability and global exponential stability with respect to the Clifford-valued
neutral-type neural network (NN) models with time delays. By considering the neutral term, a Clifford-valued NN model
with time delays is formulated, which encompasses real-valued, complex-valued, and quaternion-valued NN models as special
cases. In order to achieve our main results, the n-dimensional Clifford-valued NN model is decomposed into 2" n-dimensional
real-valued models. Moreover, a proper function is constructed to handle the neutral term and prove that the equilibrium point
exists. Utilizing the homeomorphism theory, linear matrix inequality as well as Lyapunov functional methods, we derive the
sufficient conditions corresponding to the existence, uniqueness, and global asymptotic stability with respect to the equilibrium
point of the Clifford-valued neutral-type NN model. Numerical examples to demonstrate the effectiveness of the results are
provided, and the simulations results are analyzed and discussed.

(© 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Over the last few decades, there have been many developments in NN models and the analysis of NNs dynamics
has received considerable attention [7,14,15,33]. Indeed, many NN models have been successfully applied to solve
real-world problems associated with pattern recognition [15,33], optimization issues [31,43], signal and image
processing [11], and associative memory [12,42]. In such applications, it is usually desirable for the NN models
to exhibit certain behaviors, depending on the characteristics of the problem to be solved [1,35]. In this context,
the stability of NN models becomes an essential requirement [48,58]. On the other hand, complex signals are
present in most NN applications [12,19,34]. In fact, NN models with the capability of handling complex signals
to properly represent geometric transformation and to interpret multidimensional signals makes them promising
for applications in various fields. Because of this, complex-valued and quaternion-valued NN models have received
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increasing research interest over the last few years [1,19,32,34,48,58]. Some of the common applications of these NN
models include image compression, chaotic time series prediction, color night vision, polarized signal classification,
3D wind forecasting, and others. Many results with respect to the stability of complex-valued and quaternion-valued
NN models with time delays are available in the literature, e.g. [19,25,32,34,48,50,53,57,58].

From the theoretical perspective, Clifford algebra provides a strong foundation for solving geometric problems.
The principle of Clifford algebra is useful for addressing a variety of science and engineering problems, which
include robotic, signal and image processing and neural computing [6,13,20,36,37]. Clifford-valued NN models
are the generalization of real-valued, complex-valued, and quaternion-valued NN models. These NN models are
effective for tackling high-dimensional data and spatial geometric transformation problems [5,6,13,20]. Theoretical
and applied studies of Clifford-valued NN models have recently become a new research subject. However, the
dynamic properties of Clifford-valued NN models are usually more complex than those of the real-valued and
complex-valued and quaternion-valued NN models. As such, studies on Clifford-valued NN dynamics are still
limited due to the non-commutativity of multiplication with respect to Clifford numbers [2,3,21,22,26-28,30,49,59].

Based on the linear matrix inequality (LMI) method, global exponential stability criteria pertaining to delayed
Clifford-valued recurrent NN models were studied in [59]. Pertaining to Clifford-valued NN models with time
delays, their global asymptotic stability issues were examined in [30]. The sufficient conditions are obtained by
decomposing the n-dimensional Clifford-valued NN model into 2”'n-dimensional real-valued models. In [22],
the existence and global exponential stability with respect to almost periodic solutions has been derived for
Clifford-valued neutral high-order Hopfield NN models with leakage delays. Leveraging the Banach fixed point
theorem as well as Lyapunov principles, the global asymptotic almost periodic synchronization issues have been
derived for Clifford-valued cellular NN models [27]. In [2], the study on weighted pseudo almost automorphic
solutions pertaining to neutral type fuzzy cellular NN models with mixed delays and D operator in Clifford algebra
has been conducted. The existence of anti-periodic solutions with respect to a class of Clifford-valued inertial
Cohen—Grossberg NN models utilizing Lyapunov functionals has been investigated in [26].

Due to the limited speed of signal propagation, time delays (either constant or varying) are often encountered in
NN models operating in real-world applications [4,38—41]. Time delays are the main source of various dynamics
such as chaos, divergence, poor functionality, instability [8,18,45,51]. As such, dynamics of recurrent NN models
with time delays have gained growing attention, and many results have been reported [9,10,16,17,44,46]. In NN
models, we study two general types of time delays: neural-type and retarded-type delays [47,50,52-54,57]. In
retarded-type NN models, time delays in the states are formulated, which are not adequate to describe the precise
dynamic characteristics with respect to real neurons. As such, neutral-type NN models have become important,
whereby delays corresponding to the time derivatives of states are formulated [23,24,29,55,56]. This constitutes the
motivation for the current study.

To the best of our knowledge, there are hardly any papers that deal with the problem of global asymptotical
stability and global exponential stability of Clifford-valued neutral-type NN models. Indeed, this interesting topic is
still an open challenge. Therefore, our study focuses on the sufficient conditions to ascertain the global asymptotical
stability and globally exponentially stability of Clifford-valued neutral-type NN model. Firstly, the original
n-dimensional Clifford-valued model is decomposed into 2" n-dimensional real-valued models. Next, we investigate
the global asymptotic and exponential stability characteristics of Clifford-valued neutral-type NN models. In
comparison with related studies in the literature, our research has the following key contribution. For the first
time, we investigate both global asymptotic stability and global exponential stability of Clifford-valued NN models
that include the neutral term. In comparison with other results, the outcome of our study is new and is more
general even when the considered Clifford-valued NN model is decomposing into real-valued, complex-valued, and
quaternion-valued models. In addition, the proposed technique is applicable to other dynamic behaviors of various
types of Clifford-valued NN models with time delays.

We organize this paper as follows. The Clifford-valued NN model with neutral term is formally defined in
Section 2. In Section 3, the new stability criterion is presented. Numerical examples and the associated results are
provided in Section 4. The research findings are concluded in Section 5.

2. Problem definition and mathematical fundamentals
2.1. Notations
Let R" and A" denote the n-dimensional real vector space and n-dimensional real Clifford vector space,

respectively; R"*" denotes the set of all n xn real matrices and A"*" denotes the set of all n xn real Clifford matrices,

509



G. Rajchakit, R. Sriraman, C.P. Lim et al. Mathematics and Computers in Simulation 201 (2022) 508-527

respectively. Superscripts 7 and * indicate matrix transposition and matrix involution transposition, respectively.
Any matrix P > 0 (< 0) denotes a positive (negative) definite matrix. We define A as the Clifford algebra with
m generators over the real number R and the norm of R” as ||pl| = Y.\, |p:|. In addition, p = Y, phes € A
denotes [|plla = Y 41 P21 Amax(P) and Apmin(P), respectively, denote the maximum and minimum eigenvalues of
the matrix P. For ¢ € €([—n, 0], A"), and the norm |¢||, < Sup_, <s<o ll¢( + s)|| is introduced.

2.2. Clifford algebra

This subsection provides some Clifford algebra results. For more details, we refer the papers [21,49].
Define the Clifford real algebra over R™ as

A:{ Z aAeA, aAER},

AC(1,2,....m}
where ey = e, e, ..., With A={r;,r,...,n}, 1 <ri<mn<---<r, <m
Moreover, the Clifford generators are denoted as ey = ep = 1 and e, = ey, r = 1,2, ..., m, and they fulfill

the following conditions

eej+ejeg=0, i#j i,j=12,...,m,
e?:—l, i=1,2,...,m.

For simplicity, we combine the related subscripts when an element represents the product of multiple Clifford
generators, €.2. e4e5e5€7 = €4567.
Let A=1{0,1,2,...,A,...,12...m}, and we have

A= {ZaAeA, at e R},
A

where 3, denotes }_,_, and A is isomorphic to R?".
For any Clifford number p =), pAey, the involution of p is defined by

p=Y_ péa
A

alAl(c[Al+])
2

where ey = (—1) ea, and

0, if A=40,

v, if A=rir...r,.

o[A] = {

From the definition, we can directly deduce that eqe4 = €4e4 = 1. For a Clifford-valued function p = ) 4 pAe A
A . T dp(t) _ dpAn)
R — A, where p” : R —[;K]I%ﬂf\l)e A, and its derivative is represented by “C= =", e,
. -_ a (o . - - . . .
Since eges = (—1) 2 epes, WE can write egeq = ec or eges = —ec, where ec is a basis of Clifford
algebra A. As an example, e,,,,€r,r; = —€1,€ryr; = —€r €88, = —e, (—1)e,, = e, e, = e, ,,. Therefore, we
can identify a unique corresponding basis ec pertaining to a given ege4. Define

0, if eBEA =éc,

1, if EBéA = —éc,

o[B.A] = {

and then, epéy = (—1)7BAlec. ) ) )
Moreover, for any ¥ € A, there is a unique %€ that satisfies 984 = (—1)°1B-AIGC for ege, = (—1)°1BAlec.
Therefore

gB.AeBEA — %B.A(_I)G'[B.A]ec — (_1)G[B.A]%C(_1)U[B..A_]ec — gCEC.

and ¥ =) 9Cec € A.
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2.3. Problem definition
Consider a Clifford-valued NN model with discrete time delays, as follows:

Pit) = —dipit)+ Y aij fi(pj ) + D _bijgi(pjt = D)+ D ey pit —h) +ui, 1= 0,

j=1 j=1 Jj=1 M
pi(s) = i(s), s €[—n,0], i=1,2,...,n,
where i, j = 1,2, ..., n, and the number of neurons is represented by #. In addition, p;(t) € A represents the state

vector of the ith unit; 0 < d; € R indicates the rate used by the ith unit to reset its potential to the resting state
upon disconnection from the NN model; a;; € A, b;; € A are the strengths of the neuron interconnections without
and with time delay between cells i and j; ¢;; € A denotes coefficients of the time derivative of the delayed states;
u; € A is an external input for the ith unit; f;(-) : A — A and g;(-) : A — A represent the activation functions;
h > 0 is the neutral delay, while T > 0 is the constant time delay, respectively. Furthermore, ¢; is continuously
differential on s € [—n, 0], and n = max{rz, h}.

For the convenience of discussion, (1) is re-formulated in the following vector form
pt) = =Dp@) + Af(p(t)) + Bg(p(t — 1)) +Cp(t —h) +u, t >0, )
p(s) = (p(s)a s € [_77, O],

where p(t) = (pi(t), p2(@), ..., po@)T € A*; D = diag{d,,d>,...,d,} € R" withd; > 0,i = 1,2,...,n; and
A = (aij)nxn e AV B = (bij)nxn e A" C = (Cij)nxn e AV u = (uy, u2s'-'vun)T e A" f(]?(t)) =
(Fi(pr @), fo(p2(D)), ..., fa(pa(ONT € A" g(p(t — 1)) = (g1(p1(t — 7)), g2(p2(t — ), ..., gu(pu(t — D)) € A",
(H1) For each j =1,2,...,n, fj(-), g;(-) € €(A, A) and there exist positive constants k; and /; such that
[fi) = fiDNy <kjlx —ylp, J=1,2,...,1, 3)
1g;j(x) — gy <Ljlx —yla, J=1,2,...,n, “4)
and there exist positive constants /C and £, such that | f(x)|, < K, |[g(¥)]|x < L, for any x, y € A.
By means of assumption (H1), it is clear that

(f) = FON(f) = fFO) < (x — ' KTK(x — ), (5)
(g(x) — g(¥)*(g(x) — g(») < (x — Y L' L(x — ), (6)
where K = diagik, ks, ..., k,} and £ = diag{ly, [, ...,1,} and * represents the matrix involution transposition.

Remark 2.1. Since the commutative law is not applicable to multiplication of Clifford numbers, there are limited
results on Clifford-valued NN models. Most of the existing results are derived based on the decomposition of
Clifford-valued NN models into real-valued NN models. Therefore, the use of decomposition methods to analyze
Clifford-valued NN is highly useful.

3. Main results

We transform the Clifford-valued NN model (2) into the real-valued NN models, in order to undertake issues on
non-commutativity of multiplication of Clifford numbers. This can be achieved with the help of eqes = eseq =1
and epeqeqs = ep. Given any ¥ € A, a unique ¥ that is able to satisfy ¥Cecgles = (—1)71BAGCgley =
@B-Aghep can be identified. By decomposing (2) into p = Y, pAea, we have

A= —Dpry+ Y AT+ > B P (p(t — 1)
_ BeA BeA
+ YA —hy+ut, =0, %
BeA
pA(S) = (pA(s)’ NS [_’77 O],
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where

P = (pf@), pr@), ..., pr@)', p) =) pHt)es,

AeA
ut = (u’f’,u‘;,...,uf T u= ZuAeA,
Ae/
PAE =) = (it — h), pie —h). ... e — )T, pe —hy =Y pAt — h)ea,

AeA
FEp@) = (FEPT @, p20). . py" ) (05 @), pS2(), ... py " (),
e EEOC O, P S )
g8 (pt — ) = P (Pt — 1), P2 — ), I — )
X (Pt — ). P52 — D), 3 (1 = D)),
8BGO =) PO =), P =)
A= ZACEC, AA.E’ _ (_1)0[A.1§']AC’

CeA

B= Z Bcec, BA.B — (_l)a[A.B]BC’
CeA

C= ZCCEC, CA.B _ (_l)o[A.B]CC7
CeA

AA'B = (a;}'B)nxns BA'B = (bs-'B)an, CA'B = (C;A}"B)nxns
eatp = (=) Plec.
Remark 3.1. If p(t) = (p°(t), p(1), ..., pA(@®), ..., p'>"@)T £ {pA(t)} is a solution to the NN model (7),

then p(1) = (pi(t), pa(t), ..., pa(t))T must be a solution to the NN model (2), where p;(1) = >, p(t)ea, i =
1,2,...,n, Ae A

According to Clifford algebra, the Clifford-valued NN model can be re-written in novel real-valued ones. Define

g = (P, 'O ..., ). (@))€ R
Fq@) = (Lo, (S )T, ... (A ... (f 2" (o))" e R,
gqt — ) = ("(pat —oN. ' (pe -, ... pe -1, ...,
&> "o =o' e R,
gt —h)y = ((p°C — )" ('@ — )T, (pAa — )T, (e — h)T) e RP

u = ((MO)T’ (I,tl)T7 e (MA)T’ o (I/tlz"'m)T)T c Rzmn’
D 0 ... 0
- 0O D ... 0
D=\|. . | . ’
0 0 My My
A AT AR g
~ Al ALT .Al‘z Alﬂ
A= . ' ' ' ’
Alé...m A12....m.T . Alz,.,',,z'z . Alz...r;l»m

2Mpx2Mnp
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B L O < L
B Bl Bl~1 . BLA . Bl-lZ...m
= b
12..m 12..m-1 12..m-A 12..m-12..m
B B ... B ... B -
T ¢
; e 2
12..m 12..m-1 12..m-A 12..m-12...m
C c ..c ..c ——

and we can represent (7) as
§(1) = =Dq(t) + Af(q(®) + Bgq(t — 1) +C4(t —h) +ii, 1 =0,
with the initial value,
q(s) = ¢(s), s € [-n,0],
where @(s) = (¢°()", (@' )", @A), (@)D e RF
In addition, notice that (5) and (6) can be expressed with the following inequalities
(f@ — F@" (f@) = @) =@ -9"K (¢ = ),
E@ &) @@~ 5@) =@ —P"LT(q~ .

KTK 0 .. 0 L£re 0 .. 0
~ 0 KT ... 0 - 0 cre ... 0
where I = . . ) . and £ =
0 0 ... KTk S 0 0 . L'C S

®)

€))

(10)
(1)

Notice that since the equilibrium point of both (2) and (8) are the same, stability of model (2) is equivalent to that

of (8). As a result, we examine the real-valued NN models in our subsequent analysis.

Lemma 3.2 (/30]). Let H(q) : R*"" x R¥"" be a continuous map which fulfills the following conditions: (i) H(q)

is injective on R2"", (ii) |H(q)|| — oo as ||q|| — o0o. As such, H(q) is a homeomorphism of R¥"".

Lemma 3.3. If -7 + CTC <0, thenZ —C isa nonsingular matrix (or an invertible matrix).

Proof. Utilizing contradiction, suppose Z —C is a singular matrix, and vector X' # 0 exists such that (Z —C)X = 0.

As aresult, CX = X, XTCT = X7, which yield
XTCTCx =xTx,

then
XTCTC—TH)x =0, (X £0),

which presents a contradiction to —Z + CTC < 0. This completes the proof.

Definition 3.4 (/47]). With the existence of 8 > 0 and 7°(8) > 0 such that
lg@)l < T(B)e ', V1=0,

NN model (8) is said to be exponentially stable with convergence rate 8 at the equilibrium point.

3.1. Global asymptotic stability

Theorem 3.5. Suppose (H1) is satisfied, model (8) has a unique equilibrium point and it is globally asymptotically
stable if there exist positive definite matrices P, Q and positive scalars €, and €, such that the following LMI is
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feasible:
—PD-—DIP—-DID+ K+ 0 PA PB PC
_ * —a I+ AT A ATB ATC
== o follyd 0 12
x x —I+BB B¢ |T7 (12)
* * * -7+ cré
U= —0+el <0. (13)

Proof. Step-1: By using Lemma 3.2, the existence and uniqueness of the equilibrium point with respect to NN
model (8) is proven.
From (12), by Schur complement, one has —7 +C"C < 0. Then, ZT—C is nonsingular with respect to Lemma 3.3.
Referring to (8), consider the following mapping:

H(q) = (T~ C)'[-Dg + Af(q) + Ba(g) + ). (14)
As such,

H(q) = —Dq + Af(q) + Bg(q) + CH(g) + i. (15)
It is obvious that ¢* = (¢, 43, . - ., g7 is an equilibrium point of (8) subject to ¢* meets the following equation:

H(q") = ~D(g") + Af(q") + Bg(g™) +CH(g") + i = 0. (16)

Consequently, based on Lemma 3.2, it can be concluded that, corresponding to the model defined in (8), a unique
equilibrium point exists for every input vector i if H(g) is homeomorphism of R>"".

The proof pertaining to map #H(q) is injective is first shown. Given the existence of ¢ and § with ¢ # ¢ and in
accordance with (16), one has

H(g) — H(§) = —D(q — §) + A(f(@) — £(§) + B&(q) — &) + C(H(g) — H(g)). (17)
By multiplying both sides of (17) with [2(g — §)P + 2(qg — §)D + (H(q) — H(§))17, one has

[2(g — )P +2(q — HD + (H(q) — H@GN]' [H(g) — H(@)]

= 2q — )" PI-Dqg — ) + A(f(@) — f(@) + B(g(g) — §(4))
+ C(H(g) — H@N + [D(g — §) + A(f(q9) — f(@) + B(&(q) — §4))
+C(H(g) — H@N [-Dlg — ) + A(F(@) — F@) + B@E(@) — 8&))
+ C(H(q) — H(@)))-

The above equation is equivalent to

2g — §)" (P + D)(H(g) — H(G))

= — [H(g) — HDI" [H(@) — H(@] —2(q — §)" (PD)g — §)
+2(qg — DT PAf(@) — F(@)+2q — )" (PB)&(q) — §q))
+2(q — )" (POYH(q) — H(@) — (¢ — )" (D" D)(q — §)
+@ - PTDAS (@) - @)+ (g — DT (DB)E(q) — §(4))
+ (g — 9T (DO)(H(g) — H(@) — (f@) — f(@) (ATD)(q — §)
+ (f(@) = F@" AT A(f(@) — F@) + (fl@)— @) (A"B)E(q) — §(d))
+(f(@) — F@)(ATC)(H(g) — H(§) — (8(q) — (@) (B"D)(q — )
+ (@) — 8@ B D(f(@) — F(@) + (&@) — g@) BB &) — §(4))
+(3(q) — 8@ (B"O)(H(q) — H(§) — (H(g) — H(@)' (C"D)g — §)
+ (H(q) — H(@)" C" D(f(@) — (@) + (H(g) — H(@)" CTB)(3(q) — g(q))
+ (H(g) — H(@)" (C"OYH(q) — H(§)). (18)
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In addition,
(@ — D' DAF(@)— @) = (f@)— FG@N (A™D)g — 9.
(@ — )" (DB)E(q) — 8(@) = (3(q) — §@)" (B"D)g — ),
(g — DT (DY H(g) — H(G)) = H(g) — H(@)" (C"D)(g — §).
(f@) — F@)ATB) &) — §@) = (3(q) — §@)" B" D(f(q) — f(q)),
(@) — F@)(ATCNH(g) — H(G) = (H(g) — H(G) CT A(f(@) — F(@),
(3(q) — 8@ (B"C)(H(g) — H(§) = (H(g) — H@) C"B)E(q) — §(q)).
Using equalities (19) in (18), one has
2q — 9" (P + D)(H(q) — H(G))
=—[H(g) — HDI"[H(@) — H] — (¢ — )" @PD + D' D)(g — )
+ 2(g — " PASF (@) — F@) +2q — )" (PBYE(q) — §4))
+2(q — 9T (POH(q) — H(@) + (f(g) — F@)N (A" D(f(q) — f(@)
+2(f(@) — F@)(A"B)&(q) — (@) + 2(f(@) — F(@)" (A"C)(H(g) — H(§))
+(3(q) — 8@ B"B)&(q) — (@) + 2(&(q) — §(@) (BTC)\(H(g) — H(G))
+ (H(g) — H(@)" (C"OYH(g) — H(G)). (20)
Moreover, from (10) and (11) it follows that
ella —"Kg — 9 — (fF@) — F@) (f(@)— f@)] =0, @1
ellq — )" Lq — ¢ — @) — 3@ &) — @) = 0. (22)
Combining (20)-(22), one has
2q — §)T (P + D)(H(q) — H(G))
<(q =" (=2PD -D'"D + e,k + &L)(q — @)
+2(q = N PAF (@) = F(@)+2g = DT (PBIE@) — &)
+2(g — N (POH@Q) — H (@) + (f(@) = (@) (=a T + AT A(f(q) — F(§)
+2(f(@) = F@)(ATB)E(9) — 8@) +2(f (@) = F@) (AT C)H(g) — H(@))
+3(@) — 8@ (—T + B"B)(E(q) — 8(@) + 2(3(q) — §(@)" (B"C)
x (H(g) — H(@)) + (H(q) — H(@) (T + C"C)(H(q) — H(G)), (23)
=¢"(1)O¢ (1), (24)
where £(t) =[(q — )7, (f(@) — F(@). @(@) — &GN, (H(g) — H(G)"]" and
611 O O3 O
* Oy Oy On

* x O3 Oy
* * * Ou

where Qll = —ZPﬁ - ﬁTﬁj— EJ/& + EzZ,N 9~12 = 'P./Zl, 913 =~P~l§, 914 = Pé, 922 = —GII+ ATA, 923 = ATB,
Oy = .ATC, Oy = —6 T + BTB, O3y = BTC, O =-1+ cTcC.
Since = < 0 is true and based on the relation between 6;; and 5;; (i, j = 1,2, 3,4), one has
X0+ Q- al)X + (X 6y + X 63 + X o)X
+ (X[ O+ X Oy + X] O3 + X[ O X,
+ (X[ O3 4+ X On3 + X O35 + X O43);
+ (X[ O+ X Opy + X] O3y + X )Xy <0,

19)

6 =
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forv X =[x, 2], 2, X", and X # 0. From (13), we have
Xl 61X + X 6,) + & 65 + &l 6,
+ (X O+ X Oy + X 65+ X O,
+ (X O+ X O+ X O35+ X O35
+ (X 01y + X Ory + X O3y + X] 01Xy < X (—Q + L)X < 0.
As such, XTOX < 0 holds for V X # 0. Therefore, one has
6 <0. (25)
Based on (24)—(25) and g # ¢, the following inequality holds
2q — " (P + D)(H(g) — H(§)) <0, (26)

and one can conclude that H(q) # H(q) for all g # ¢. As such, map H(q) is injective.
Next, |H(g)|| — oo as ||g|| — oo is proven. Let ¢ = 0. Then, from (24) one can deduce that

—2¢" (P + D)(H(g) — H(0) = Amin(—O)lq . 27)
Based on the Schwartz inequality, one has
2llgllIP + DIAH@N = IHO)) = [Amin(— )l 11*. (28)

That is
[[Amin(—O)l
P+ D
As such, ||H(g)|| — oo as ||g]| = oco. By Lemma 3.2, map H(g) is a homeomorphism of R2"". As a result, a
unique point g* exists such that H(g*) = 0. In other words, (8) has a unique equilibrium point g*.
Step-2: The globally asymptotical stability corresponding to the equilibrium point with respect to model (8) is

proven. Utilizing the transformation ¢ = g — ¢*, the equilibrium point with respect to model (8) can be shifted to
the origin of the following model. Then, model (8) as

qt)= —Dgt) + Af(G®) + Bg@G —v) +Cqt — h), 1 >0, (30)
é(s) = (;Z(S)v NS [—’7» O],

2(IH@I = 7O = g . (29)

where £(§) = f(q +¢") — f(g*) and g — 1) = 8(G — ©) +¢") — &(¢"). and §(s) = G(5) — ¢".
We construct the following Lyapunov functional:

V@Gn) =g " 0P§) +¢" )Dgt) + f G"()Qg(s)ds + / ] " (5)q(s)ds. (31)

The time derivative of V(g (¢)) along the trajectory of (30) yields

V(G() = 24" (OPG(t) + 24" (0)DG(t) +§" (1)Q4(1) — ¢ (t — 1)QG(t — 1)

+4T (0§ — §" (¢ — hg(t — h),

= 24" (OPG(t) + ¢" ()Q2DG(1) + §(1) + ¢ (1)Q4(1)
— Gt —1)QG(t — 1) — ¢ (t — Wg(t — h),

= 24" (PI-Dg(1) + Af(G(1) + Be@G(t — 1)) + Cq(t — h)]
+[=Dg() + Af(G(1) + BaG(t — v) + C4t — )"
x [DG(t) + Af(G0) + Bg@G(t — ) + Cq(t — h)]
+47(1)Q4(1) — " (t — 1)QG(rt — ) — §" (t — h)g(t — h),
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which gives

V@G() = §" ()(=2PD)g(t) + 24" ()(PA) f(G(1)) + 24" (1) (PB)g(G(r — 1))

+24" (POt — h) — G (D" D)g(1) — §" (DA f(G(1))
— " (O(DBgG(t — 1) — §" (1)DC)(t — h)

+ FT@O)ATD)G(1) + fT@GNAT A) F(G(t)

+ FTG@OYAT B3t — 1) + fT@Gn)ATC)g(t — h)
+37(Gt — B D)) + g (Gt — BT A FG(1))
+37@G — OB B)gG(t — 1) + &7 (G — )BTOG(t — h)
+4"(t = C"D)G®) + 4"t — )C" A F@G)

+4"(t = C"BEG — 1)+ 4"t — h)CTC)(t — h)
+3"(10Q4(1) — " (t — 1)QG(t — 1) — ¢ (t — h)g(t — h).

In addition, the following equalities hold

" DA FG1) = fTGn)A" D)),
" (DBFG(t — 1) = §" @Gt — THB D)G(1).

G" (D)t —h) = " (t — HCTDYG(1),
FTGONATB)3G(t — 1) = g7 (Gt — )BT A) f@G)).
FT@OYA"Oq(t — hy = 4" (t — WC" A f@G)),
g7 (Gt —NB OG(t — hy = 4"t — )(C"B)g@G(t — 7).

Hence, (32) together with (33) give

V(G(®) = §"(t1)(—2PD — D' D)g(t) + 24" (1)(PA) f(G (1)
+24" ((PB)(G(t — 1) + 24" (1)(PC)q(t — h)
+ fT@G@O)AT A fG0) + 2T GO)AT B)g(G(t — 1))
+ 2T @GONAT Ot — ) + &7 (Gt — )BT B)g(G(t — 1))
+287 (Gt — B Ot —hy+ "t — )(CTC)g(t — h)
+4"(1)Q4(1) — " (t — 1)QG(t — ) — ¢" (t — h)g(t — h).

Moreover, from (10)—(11) it follows that

alg" (OKq) — f1(Gw) (G = o,
elg"(t — LGt — 1) — g7 (@Gt — 1)8(G(t — )] = 0.

Combining (34)—(36), one has

V@Gn) < §" 0550 + 3"t — 1) Pq(t — 1),

where £(1) = [§7 (1), FT(G(1)), 8T(G(t — 1)), GT(t — )], and =, ¥ are given in Theorem 3.5.

Mathematics and Computers in Simulation 201 (2022) 508-527

(32)

(33)

(34)

(35)
(36)

(37

As a result, based on inequalities (12), (13) and (37), V((j(t)) < 0 and the origin of model (30), or equivalently

the equilibrium point of model (8), is globally asymptotically stable. This completes the proof.
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3.2. Global exponential stability

Theorem 3.6. Assume that (H1) is satisfied. Subject to the existence of positive definite matrices P, Q, R and
positive scalars €; and €, such that the following LMI is feasible:

~PD-D'P+eK+eal+28P PA 0 PB PC  -D'R
* —€Z 0 0 0 ATR
* * —eT+Q 0 0 0
= ~
x x x —e ¥ 0 gr | =%
* * * * —e ¥R CTR
* * * * * -R
(38)
then the origin of model (30) is globally exponentially stable with exponential convergence rate B. Moreover,
. Amas PIGIP + i DG 161 1P + s RN 10217
gl P , (39)

where |01 = sup_, o 18(G())I| and [|62]] = sup_,, o 1G(s)].

Proof. For deriving the global exponential stability criteria, the following Lyapunov functional is formed:

V@) = 2457 (1Pa) + / P57 (G()) Q@ (s))ds

+ f g7 (sYRG(s)ds. (40)
t—h

Based on the time derivative of V(g (t)) along the trajectory of (30), one has
V@G) = 28¥GT (1YPG(t) + 2% GT (1)PG(t) + ' 5T (§(1))Q2(§(1))
PTG — 1)Q8(G( — 1) + PG (RG (1)
PGt — hYRG(t — h),
=28 GT (YPG(1) + 2% G" (YP[-Dg(t) + Af(G(1) + Bg(G(t — 1))

+ Cq(t — ) + g7 (G(1)Qg(a (1) — Vg (G(t — 1)Qg(G(t — 1))

+e?'[-Dg(t) + Af(G1) + BgGt — 1) +Ca(t — 'R

x [=Dg(t) + Af(G) + Bg@G(t — 1) + Cq(t — h)]
PPMGT (¢ — mYRG(r — h),

V(G(1) = 28*'G" (1YPG(t) — 2¢*'G" (1) (PD)G(1) + 2§ (1)(PA) f(G(1))
+ 2 GT (1)(PB)g(G(t — 1)) + 227 GT (1)(PC)g(t — h)
+ e gT(G(1)Q8(G(1) — P Vg (G(t — 1))Q8(G(t — 1))
+ e [=Dg(1) + Af(G(1) + Ba Gt — ) + C4(t — 'R
x [=Dg(t) + Af(@G) + Bg@G(t — 1) + Cq(t — h)]
HPMGT (t — RYRG(t — h). (41)
Moreover, from (10)—(11) it follows that

Pe[g"(OKG) — FL(@Gm) fGan = o,
Prer[gT ()Lq(r) — &7 (G())§(G)] = 0.

(42)
(43)
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for €; > 0 and €, > 0. As such, by combining (41)—(43), one has

VGa) = o’ 1)@+ 1T"RIDw (1), (44)
where
(1) =[G" () TG §"G) &G —) q" @« —ml,
2PD+e K+l +28P PA 0 PB PC
* —T 0 0 0
& — * x —eI+Q 0 0 ,

* * * —e 2T Q 0
* * * * —e PR

I=[-D A 0 B Cl.
By Schur Complement, it is obvious that £2 < 0 in (38) is equivalent to @ + IITRII < 0. Thus, V(c}(t)) < 0, then
V(q(@®)) < V(q(0)). (45)

However,

0
V@G() = §7 (0YPG(0) + / P T (6(5) Qi (s))ds

T

0
+ / B ET (YR (s)ds.
—h

0
< A PG + 2max(Q) [ €287 (G(5))8(G(5))ds

0
+ Amax(R) f G ()4 (s)ds,
—h

0
= Anax(PIGI* + Amax(Q) [ €*Pds|6y]

T

0
+ hma(R) f B5ds |6y,
—h

PR + A (D 6 2
— /‘max ‘P max 2,3 1
1— —2Bh 5
Amax(R)—————116> ||, 46
+ o (R)— 216 (46)
and
V@G@) > PG 0PG(t) > e Amin(PG(0)]1>. (47)
From (45)—(47), one has
. hmax (PPN + Aanax (D=2 10112 + Amax (R) 252 16 2
gl < o P) e P, (48)

From Definition 3.4, model (30) is exponentially stable with exponential convergence rate 8. This completes the
proof of Theorem 3.6.

Remark 3.7. The investigation of Clifford-valued neutral-type NN models has a higher degree of complexity
than that of the usual recurrent NN models due to the neutral term. Corresponding to the neutral term and using
Lemma 3.3 we formulate an important mapping, that is, #(¢) = (Z —C)~'[—Dq + Af(q) + Bg(q) + it] instead of
H(g) = —f)q + Af(q) + l’;’g(q) + u, which is often considered in the existing literature [23,52,54,55].
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Remark 3.8. The Clifford-valued NN model (2) includes real-valued (m = 0), complex-valued (m = 1) and
quaternion-valued (m = 2) NN models as its special cases.

Remark 3.9. In [2,21,22,27,28,49], the authors studied the dynamics of Clifford-valued NN models without the
neutral term. Here, we formulate new sufficient conditions pertaining to the global asymptotic and exponential
stability of Clifford-valued NN models with the neutral term. Therefore, our proposed method is different as
compared with those in the existing literature.

Remark 3.10. The computational complexity depends primarily on the maximum number of LMI decision
variables. As is well known, the number of decision variables increases when using the augmented LKFs and
free matrix method. While, when the delay subintervals number becomes more, it might prompt the complexity
and the computational burden of the main results. In order to handle this issue easily, we have introduced standard
Lyapunov functional, and its derivative estimated without any integral inequalities and decomposition approach.
Hence, the proposed stability results may provide a smaller computational burden.

4. Numerical examples

Numerical examples are presented to show the usefulness pertaining to the results in Section 3.

Example 1. Given that m = 2 and n = 2, the following Clifford-valued NN model with the neutral term is
considered

pt)= —Dpit)+ Af(p(t)) +Bg(pt — 1)) +Cp(t —h)+u, t >0, (49)

The multiplication generators are: e} = €3 = 7, = ejeze1y = —1, e1e2 = —eze] = ey, €€y = —epe; = —ea,

erxenn = —eney = ey, pi(t) = pl(t)eo+ pl(t)er + pi(t)ea+ pi2(t)ern, pa(t) = pI(t)eo+ pi(t)er + p3(t)ea+ pi2 (e
Furthermore, we take

2 0
p= (5 3)
0.2 sin teg + sin te; 0.1eg + 0.3 cos tey + 0.6e2
A= . ,
0.05¢p — 0.2 cos v/5tes + 0.4e;  0.1eg + 0.2¢; + 0.05 sin v/3tepn

5 (03sin+/3rep+0.01sinre;  0.leg +0.02 cos v/3res +0.3e12

~ \0.05¢y — 0.2 sin te; + 0.05¢;,  0.2¢¢ + 0.2¢; + 0.05 sin \/gtelz ’
o (0Asin V3teg +0.02 sin te;  0.2¢g + 0.03 cos v/3te; + 0.4eyy

o 0.06eg — 0.3 sin te; + 0.06¢1,  0.3¢g + 0.3¢; + 0.06 sin \/52‘612 ’

1 0)
/cz,c:(z ,
0 3

<u|> _ <11—Osin pleo + %sin \/§p112612>

1 o
U TosIn pgeo + {3sin ﬁp%zelz

- -
filp1) = Zsin pleo — gsin pies,

T
f(p2) = 535N Pa€o — Zgsin paes,

1 1 .
gi1(p1) = 5308 \/§pfe2 —558in \/gpfzen,

1 I .
g(p2) = gcos «/gp%eg - gsm «/gpézelz,
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According to their definitions, we have

o (02sinz 0.1
A= ( 0.05 0.1)’

A= (5" 02):
A= 0.3 cos ¢
- \-o0. 2 cos /5t 0 ’
0
12 _
A (04 005s1nfr>
B 0.3 sin v/37r 0.1
o 0.05 0.2
A (O .01 sin ¢ )
B — 0.02 cos /3t
o 2 sin ¢ 0 ’
BIZ _
05 0. 05 sin f 3t
0.4 sin /3t 0.2
0.06 0.3
(O .02 sin ¢ >
0.03 cos /3t
—0. 3 sin ¢ 0 ’
0
0.06 0. 06 sin f 3t
and
A° AT Ai AI_Z
. A! Al.T Alé Al.l’z
A= A2 Az.I Az.é Az.l’z ’
A2 A12.I Alz.é A12.1'2
AO —.Al —.A2 _AIZ
Al .AO _Alz AZ
= A2 A2 A0 _A |
A12 _AZ Al AO
B BT Bi BQ
_ B! pBLl Bl gLz
B= BZ BZ.I 82.2 62.1_2 ’

B2 Blz.i Blz.i 612.1’2
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BO —B] _BZ _812
Bl BO _BIZ BZ
= B2 B=2 BO _B' |’
BIZ —82 Bl BO
cO CT Ci 61_2
5 Cl Cl.i Cl 2 Cl.1_2
C= c? Cz.i Czi Cz.l’z ’
cl2 ozl pl22 el2i2
CO _Cl _CZ _Cl2
Cl CO _CIZ CZ
= C2 CIZ CO _Cl
CIZ _CZ Cl CO
We choose the constant delay parameters T = 0.6 and & = 0.4. Utilizing the LMI toolbox in MATLAB, we
ascertain that the LMI conditions of (12) and (13) in Theorem 3.5 are true with ¢, = —0.2638. The feasible
solutions of the existing positive definite matrices P, Q and positive scalars €; and €, are
38.2791 —0.8887 0.0675 —1.7130 2.0833 —-0.7219 0.1309 1.6582
—0.8887 30.4308 1.9566 —1.9600 1.4907 —1.9715 —1.5555 0.5288
0.0675 1.9566  38.1666 —1.2884 0.1224 1.5489 —0.3699 0.8036
P —1.7130 —1.9600 —1.2884 32.5698 0.9321 0.1034 —-0.5295 0.3151
| 2.0833 1.4907 0.1224 0.9321 43.1672 —0.6722 3.0597 —1.9214 |’
—0.7219 —1.9715 1.5489 0.1034 —0.6722 33.5505 2.8693 0.0062
0.1309 —1.5555 —-0.3699 —0.5295 3.0597 2.8693  40.6472 —0.9730
1.6582 0.5288 0.8036 0.3151 —1.9214 0.0062 —0.9730 33.6483
97.5437 —6.1196 0.2006 —7.1902 9.6137 —0.5725  0.5496 9.3294
—6.1196 255.3968 8.2195 —6.3808  6.0384 —5.9193 —7.7196  1.9666
0.2006 8.2195 97.1600 —6.1034 0.3674 8.8631 —3.0002  0.6301
o— —7.1902 —6.3808 —6.1034 262.7868 2.8300 —0.0693  0.6800 1.3257
B 9.6137 6.0384 0.3674 2.8300 117.4192 —4.3146 14.8075 —7.0619
—0.5725 —5.9193 8.8631 —0.0693 —4.3146 265.2626 11.0428 0.2659
0.5496 —-7.7196 —3.0002  0.6800 14.8075  11.0428 104.2020 —5.2613
9.3294 1.9666 0.6301 1.3257 —=7.0619  0.2659 —5.2613 266.1515

Sriraman, C.P. Lim et al.
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€1 = 258.0273, ¢, = 173.5523.

It is straightforward to show the fulfillment of all conditions with respect to Theorem 3.5. Through numerical
simulation, we verify that the unique equilibrium point of model (49) is globally asymptotically stable. Under the
initial conditions ¢1(t) = —2.5¢g 4+ 0.9¢; — 0.3¢; — 2.2¢e1, and @,(t) = 1.6eg — 0.4e; + 0.2e; + 2e15, the time curves
of the state trajectories of model (49) are presented in Figs. 1-5.

Example 2. Consider the two neuron Clifford-valued NN models with neutral term (49) with the parameters D, A,
B and C as defined in Example 1.

We choose the constant delay parameters 7 = 0.5, h = 0.4 and 8 = 0.3012. With the help of the Matlab LMI
toolbox, LMI (38) of Theorem 3.6 is feasible with #,;, = —0.0041. The feasible solutions of the existing positive
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—
—

-2 -

Time

Fig. 1. The time curves of the states p?(t), pg(t) of the NN model (49).
1

0.8 —— Pyt

0.6 4

= 04 1

o 02r i

-0.2r J

0 2 4 6 8 10
Time

Fig. 2. The time curves of the states pi(t), pzl(t) of the NN model (49).
0.3

2 4 6 8 10
Time

Fig. 3. The time curves of the states p]2(t), p%(t) of the NN model (49).
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—p

— ||

Time

Fig. 4. The time curves of the states p}z(t), p%z(t) of the NN model (49).

2 0.4
0.2
1
=00
o
0
-0.2
-1 -0.4
-3 -2 -1 0 -0.5 0 0.5 1
P )
0.2 2
0.15
. 1
0.1 T
o
0
0.05
Q -1
-0.4 -0.2 0 -3 -2 -1 0 1
pa(t) p3(t)

Fig. 5. The time curves of the states corresponding to four parts of pi(f) and p,(¢) in 2-dimensional space.

definite matrices P, Q and R and positive scalars €; and €, are

23.4850
—1.1421
0.0453
0.1693
—1.9659
2.6122
—0.4756
2.5301

—1.1421
13.8770
—0.3456
0.6360
0.4564
—0.4761
—2.2512
0.9021

0.0453
—0.3456
23.5748
—1.6670

0.2379

2.5966

0.6167
—2.5062

0.1693
0.6360
—1.6670
15.5336
—2.6502
0.7351
1.5919
0.3889

—1.9659
0.4564
0.2379

—2.6502

20.7754

—2.2779

—1.7230

—0.0589
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2.6122
—0.4761
2.5966
0.7351
—2.2779
16.2712
0.4579
—0.1116

—0.4756
—2.2512
0.6167
1.5919
—1.7230
0.4579
22.6933
—2.6519

2.5301
0.9021
—2.5062
0.3889
—0.0589
—0.1116
—2.6519
15.9879
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15.1204  0.9142 —-0.0465 —-0.2369 0.0516 —1.7659 0.0566 —1.7899
09142 14.8878 0.1581 —0.5765 0.6814 —0.3301 1.7237  0.1834
—0.0465 0.1581 15.0218 0.9839 —-0.0011 —-1.7689 —0.1577 1.7696
—0.2369 —0.5765 0.9839  16.0558 1.6517  0.0538 —1.2596 0.1640

Q= 0.0516  0.6814 —0.0011 1.6517 14.7037 0.8420  0.3049 —0.1589 |’
—1.7659 —0.3301 —1.7689 0.0538  0.8420 16.3236  0.4345  0.0018
0.0566 1.7237  —0.1577 —1.2596 0.3049  0.4345 14.8152 0.6699
—1.7899 0.1834 1.7696  0.1640 —0.1589 0.0018  0.6699  16.2257
3.1881 0.3453 —0.0460 —-0.5179 1.0042 —1.5760 0.3365 —0.5542
0.3453 3.8869  0.3538 03350 0.3254 —-0.0784 0.3829  0.2004
—0.0460 0.3538 2.8992  0.7381 —0.0700 —-0.5967 —0.2870 1.4418
R = —0.5179 0.3350  0.7381 4.2004  0.6453 0.2246 —1.1274 0.1074

1.0042  0.3254 —0.0700 0.6453  4.6218 0.3315 1.2456 —0.1562 |~
—1.5760 —-0.0784 —0.5967 0.2246  0.3315  4.2909  0.2644 —0.0530
0.3365 03829 —-0.2870 —1.1274 1.2456  0.2644  3.6074  0.3481
—0.5542  0.2004 1.4418  0.1074 —0.1562 —0.0530 0.3481 4.1522

€1 = 37.6106, €, = 20.8725.

All the conditions of Theorem 3.6 are satisfied with Example 2. As a result, we verify that the equilibrium point
of model (49) is globally exponentially stable.

5. Conclusion

In this study, the global asymptotic stability and global exponential stability analysis of the Clifford-valued
neutral-type NN models with time delays has been established. For handling this problem, we first have decomposed
the considered n-dimensional Clifford-valued neutral-type NN model into 2"n-dimensional real-valued models.
In addition, to deal with the neutral term of NN model (1), we have formulated function (14) for the proof
corresponding to the existence of the equilibrium point. Secondly, we derived new LMI-based sufficient conditions
on the basis of Lyapunov and homeomorphism theories. These conditions guarantee the existence, uniqueness, and
global asymptotic stability of the equilibrium point pertaining to the Clifford-valued neutral-type NN model. Finally,
to ascertain the validity of the results, numerical examples have been provided.

Undoubtedly, there are some developments to be discussed further in this article. We will shortly attempt
to explore the various dynamics of Clifford-valued neutral-type NNs with impulsive effects and Clifford-valued
neutral-type NNs with parameter uncertainties. In the near future, the corresponding results will be achieved.
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