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In this paper, we investigate the general solution of a new quadratic functional equation of the form ∑1≤i<j<k≤rϕðli + l j + lkÞ =
ðr − 2Þ∑r

i=1,i≠jϕðli + l jÞ + ðð−r2 + 3r − 2Þ/2Þ∑r
i=1ϕðliÞ: We prove that a function admits, in appropriate conditions, a unique

quadratic mapping satisfying the corresponding functional equation. Finally, we discuss the Ulam stability of that functional
equation by using the directed method and fixed-point method, respectively.

1. Introduction

The stability problem of functional equations originated
from a question of Ulam [1] concerning about the stability.
Hyers [2] gave a first affirmative answer to the question of
Ulam for Banach spaces. In addition, various generalizations
of Ulam’s problem and Hyer’s theorem have been extensively
studied and many elegant results have been obtained [3–9].
The theory of nonlinear analysis has become a fast-
developing field during the past decades. Functional equa-
tions have substantially grown to become an important
branch of this field. In [10], the authors deal with a compre-
hensive illustration of the stability of functional equations,
and in [11], the authors studied functional equations and
inequalities in several variables. Very recently, most classical
results on the Hyers-Ulam-Rassias stability have been offered
in an integrated and self-contained version in [12]. It is worth
noting that among the stability problem of functional equa-
tions, the study of the Ulam stability of different types of qua-
dratic functional equations is an important and interesting
topic, and it has attracted many scholars [13–18]. In addition,

very recently, authors studied various types of stability results
and have been discussed with differential equation [19–29].
To the best of the author’s knowledge, a new approach to
Hyers-Ulam stability of r-variable quadratic functional equa-
tions has not been studied so far, which motivates the present
study.

Consider the functional equation as follows:

ϕ l +mð Þ + ϕ l −mð Þ = 2ϕ lð Þ + ϕ mð Þ, ð1Þ

is called a quadratic functional equation. Every solution of
the quadratic functional equation is a quadratic mapping.
In this paper, we investigate the general solution of a new
quadratic functional equation of the form

〠
1≤i<j<k≤r

ϕ li + l j + lk
� �

= r − 2ð Þ 〠
r

i=1,i≠j
ϕ li + l j
� �

+ −r2 + 3r − 2
2

� �
〠
r

i=1
ϕ lið Þ:

ð2Þ
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Motivated by the above discussion, we prove that a func-
tion admits in appropriate conditions and a unique quadratic
mapping satisfying the corresponding functional equation.
Finally, we discuss the Ulam stability of that functional equa-
tion by using the directed method and fixed-point method,
respectively.

2. Preliminaries

Definition 1. Let l be a real linear space. A function Φ : L × I
⟶ ½0, 1� is said to be a fuzzy norm on L if for all l,m ∈ L
and all u, v ∈ I

(N1) Φðl, dÞ = 0 for d ≤ 0
(N2) l = 0 if and only if Φðl, dÞ = 1 for all d > 0
(N3) Φðdl, vÞ =Φðl, v/∣d ∣ Þ if d ≠ 0
(N4) Φðl +m, u + vÞ ≥min fΦðl, uÞ,Φðv,mÞg
(N5) Φðl, :Þ is a nondecreasing function on I and lim

v→∞
Φ

ðl, uÞ = 1
(N6) for l ≠ 0,Φðl,:Þ is continuous on I
The pair ðL,ΦÞ is called fuzzy normed linear space one

may regard Φðl, uÞ as the truth value of the statement; the
norm of l is less than or equal to the real number u.

Definition 2. Let ðL,ΦÞ be a fuzzy normed linear space. Let
flrg be a sequence in L . Then, lr is said to be convergent if
there exists l ∈ L such that lim

r→∞
ðlr − l, uÞ = 1 for all v > 0 . In

that case, l is called the limit of the sequence lr and we denote
it by Φ − lim

r→∞
lr = l.

Definition 3. A sequence flrg be in l is called Cauchy if for each
ε > 0 and each v > 0 , there exists r0 such that for all r ≥ r0 and
all n > 0 , we have Φðlr+n − lr , vÞ > 1 − ε:

Definition 4. Every convergent sequence in fuzzy normed space
is Cauchy. If each Cauchy sequence is convergent, then the
fuzzy norm is said to be complete and the fuzzy normed space
is called a fuzzy Banach space.

Theorem 5. (Banach’s contraction principle). Let ðL, cÞ be a
complete metric space and consider a mapping W : L⟶ L
which is strictly contractive mapping, that is,

(A1) cðWl,WmÞ ≤ Lcðl,mÞ for some (Lipchitz constant)
L < 1, then

(i) The mapping T has one and only fixed point l∗ =W
ðl∗Þ

(ii) The fixed point for each given element l∗ is globally
attractive that is

(A2) lim
r→∞

Wrl = l∗, for any starting point l ∈ L

(iii) One has the following estimation inequalities:

(A3) cðWrl, l∗Þ ≤ ð1/ð1 − LÞÞcðWrl,Wr+1lÞ, for all r ≥ 0, l
∈ L

(A4) cðl, l∗Þ ≤ ð1/ð1 − LÞÞcðl, l∗Þ, with respect to l ∈ L

Theorem 6. (the alternative of fixed point). Suppose that for a
complete generalized metric space ðL, cÞ and a strictly contrac-
tive mapping W : L⟶M with Lipschitz constant L. Then,
for each given element l ∈ L, either

(B1) cðWrl,Wr+1lÞ =∞, ∀r ≥ 0 or
(B2) there exists natural number r0 such that:

(i) cðWrl,Wl+1rÞ <∞, for all r ≥ r0

(ii) The sequence ðWrlÞ is convergent to a fixed point m∗

of W

(iii) m∗ is the unique fixed point of W in the set M =
fm ∈ L : cðWrl,mÞ∞g

(iv) cðm,m∗Þ ≤ ð1/ð1 − LÞÞcðv,WmÞ for all m ∈ L

3. General Solution of the Functional
Equation (2)

In this sector, the authors obtain the general solution of the
functional equation (2). All over this sector, let L and M be
real vector space.

Theorem 7. Let L andM be a real vector spaces. The mapping
ϕ : L⟶M satisfies the functional equation ((2)) for all l1,
l2, l3,⋯, ln ∈ L , then ϕ : L⟶M satisfies the functional
equation ((1)) for all l,m ∈ L.

Proof.We first assume that the mapping ϕ : L⟶M satisfies
(1). Setting l =m = 0 in (1), we get ϕð0Þ = 0. Replacing l = 0,
m = l in (1), then

ϕ −lð Þ = ϕ lð Þ, ð3Þ

for all l ∈ L. Therefore, ϕ is even. If we choose l = l, m = l,
and l = 2l, m = l in (1), we get

ϕ 2lð Þ = 4ϕ lð Þ, ϕ 3lð Þ = 9ϕ lð Þ, ð4Þ

for all l ∈ L. In general for any positive integer r such that

ϕ rlð Þ = r2ϕ lð Þ, ð5Þ

for all l ∈ L. Conversely, replacing l1,⋯, lr by ð0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
3−times

Þ

in (2), we get

ϕ 0ð Þ = 3 r − 2ð Þϕ 0ð Þ + 3 −r2 + 3r − 2
2

� �
ϕ 0ð Þ: ð6Þ

Replacing l1,⋯, lr by ð0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
4−times

Þ in (2), we have

ϕ 0ð Þ = 6 r − 2ð Þϕ 0ð Þ + 4 −r2 + 3r − 2
2

� �
ϕ 0ð Þ: ð7Þ
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Setting l1 =⋯ = lr by ð0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
5−times

Þ in (2), we get

ϕ 0ð Þ = 10 r − 2ð Þϕ 0ð Þ + 5 −r2 + 3r − 2
2

� �
ϕ 0ð Þ: ð8Þ

Adding (6), (7), and (8) up to r-times attack, we get

ϕ 0ð Þ = r − 2ð Þ 3 + 3 r − 3ð Þð Þ + r2 − 7r + 12
2

� �
ϕ 0ð Þ

+ r
−r2 + 3r − 2

2

� �
ϕ 0ð Þ:

ð9Þ

It follows from (9), and using evenness of ϕ, we get

ϕ 0ð Þ = 0: ð10Þ

Replacing l1 =⋯ = lr by ðl,−l, 0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
1−times

Þ in (2), we obtain

ϕ 0ð Þ = r − 2ð Þ ϕ 0ð Þ + ϕ lð Þ + ϕ −lð Þð Þ

+ −r2 + 3r − 2
2

� �
ϕ lð Þ + ϕ −lð Þð Þ,

ð11Þ

for all l ∈ L. Switching l1 =⋯ = lr by ðl,−l, 0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
2−times

Þ in

(2), we get

2ϕ 0ð Þ + ϕ lð Þ + ϕ −lð Þ = r − 2ð Þ ϕ 0ð Þ + 2ϕ lð Þ + 2ϕ −lð Þð Þ

+ −r2 + 3r − 2
2

� �
ϕ lð Þ + ϕ −lð Þð Þ,

ð12Þ

for all l ∈ L. Setting l1 =⋯ = lr by ðl,−l, 0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
3−times

Þ in (2)

that

3ϕ 0ð Þ + 3ϕ lð Þ + 3ϕ −lð Þ = r − 2ð Þ ϕ 0ð Þ + 3ϕ lð Þ + 3ϕ −lð Þð Þ

+ −r2 + 3r − 2
2

� �
ϕ lð Þ + ϕ −lð Þð Þ,

ð13Þ

for all l ∈ L. Adding (11), (12), and (13), we obtain

ϕ l1 + l2 + l3ð Þ = ϕ l1ð Þ + ϕ l2ð Þ + ϕ l3ð Þ r − 2ð Þ + r2 − 7r − 12
2

� �
ϕ lð Þ

� �

+ r − 2ð Þ + r2 − 7r − 12
2

� �
ϕ −lð Þ

� �
= r − 2ð Þ r − 2ð Þϕ lð Þ + r − 2ð Þ r − 2ð Þϕ −lð Þ

+ −r2 + 3r − 2
2

� �
ϕ lð Þ + ϕ −lð Þð Þ,

ð14Þ

for all l ∈ L. It follows from (14); it reduces that

ϕ −lð Þ = ϕ lð Þ, ð15Þ

for all l ∈ L. Replacing l1 =⋯ = lr by ðl,−l, 0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
1−times

Þ in

(2), we get

ϕ 2lð Þ = r − 2ð Þ ϕ 2lð Þ + 2ϕ lð Þð Þ + −r2 + 3r − 2
2

� �
2ϕ lð Þð Þ,

ð16Þ

for all l ∈ L. Substituting l1 =⋯ = lr by ðl, l, 0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
2−times

Þ in

(2), we arrive

2ϕ 2lð Þ + 2ϕ lð Þ = r − 2ð Þ ϕ 2lð Þ + 4ϕ lð Þð Þ + −r2 + 3r − 2
2

� �
2ϕ lð Þð Þ,

ð17Þ

for all l ∈ L. Replacing l1 =⋯ = lr by ðl, l, 0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
3−times

Þ in

(2), we get

3ϕ 2lð Þ + 6ϕ lð Þ = r − 2ð Þ ϕ 2lð Þ + 6ϕ lð Þð Þ + −r2 + 3r − 2
2

� �
2ϕ lð Þð Þ,

ð18Þ

for all l ∈ L. Adding (16), (17), and (18) using evenness of
ϕ, then we get

r − 2ð Þϕ 2lð Þ + 2 r − 3ð Þ + r2 − 7r + 12
� �

ϕ lð Þ� �
= r − 2ð Þ ϕ 2lð Þ + 2r − 4ð Þϕ lð Þð Þ + −r2 + 3r − 2

2

� �
2ϕ lð Þð Þ,

ð19Þ

for all l ∈ L. It follows from (19); we get

ϕ 2lð Þ = 4ϕ lð Þ, ð20Þ

for all l ∈ L. In general for any positive integer r, then can
be written as

ϕ rlð Þ = r2ϕ lð Þ, ð21Þ

for all l ∈ L. Replacing l1 =⋯ = lr by ðl,m, 0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
ðr−2Þ−times

Þ, we

arrive
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r − 2ð Þϕ l +mð Þ + r − 3ð Þ + r2 − 7r + 12
2

� �� �
ϕ lð Þ

�

+ r − 3ð Þ + r2 − 7r + 12
2

� �� �
ϕ mð Þ

�
� r − 2ð Þ ϕ l +mð Þ + r − 2ð Þϕ lð Þ + r − 2ð Þϕ mð Þð Þ

+ −r2 + 3r − 2
2

� �
2ϕ lð Þ + ϕ mð Þð Þ,

ð22Þ

for all l,m ∈ L. Setting l1 =⋯ = lr by ðl,−l,m, 0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
ðr−3Þ−times

Þ

ϕ mð Þ = r − 2ð Þ ϕ l +mð Þ + ϕ −l +mð Þð Þ

+ −r2 + 3r − 2
2

� �
ϕ lð Þ + ϕ −lð Þ + ϕ mð Þð Þ,

ð23Þ

for all l,m ∈ L. Replacing l1 =⋯ = lr by ðl,−l,m,

0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
ðr−3Þ−times

Þ in (2), we get

ϕ mð Þ + ϕ l +mð Þ + ϕ l +mð Þ
= l − 2ð Þ ϕ l +mð Þ + ϕ −l +mð Þ + 2ϕ lð Þ + 2ϕ mð Þð Þ

+ −r2 + 3r − 2
2

� �
ϕ lð Þ + ϕ −lð Þ + ϕ mð Þð Þ,

ð24Þ

for all l,m ∈ L. Substituting l1 =⋯ = lr by ðl,−l,m,

0, 0,⋯, 0|fflfflfflfflffl{zfflfflfflfflffl}
ðr−3Þ−times

Þ in (2) that

2ϕ mð Þ + 2ϕ l +mð Þ + 2ϕ −l +mð Þ + 2ϕ lð Þ
= r − 2ð Þ ϕ l +mð Þ + ϕ −l +mð Þ + 4ϕ lð Þ + 2ϕ mð Þð Þ

+ −r2 + 3r − 2
2

� �
ϕ lð Þ + ϕ −lð Þ + ϕ mð Þð Þ,

ð25Þ

for all l,m ∈ L. Adding (23), (24), and (25) and using
evenness of ϕ, we get

1 + r2 − 7r + 12
2

� �� �
ϕ mð Þ + r2 − 7r + 12

� �
ϕ lð Þ + 2ϕ l +mð Þ

+ r − 2ð Þϕ −l +mð Þ + r − 2ð Þϕ lð Þ = r − 2ð Þ ϕ l +mð Þ + ϕ −l +mð Þð Þ
+ r − 2ð Þ 2r − 6ð Þϕ lð Þ + r − 2ð Þ r − 3ð Þϕ mð Þ

+ −r2 + 3r − 2
2

� �
ϕ lð Þ + ϕ −lð Þ + ϕ mð Þð Þ,

ð26Þ

for all l,m ∈ L. Replace m by −m in (26), we get

1 + r2 − 7r + 12
2

� �� �
ϕ −mð Þ + r2 − 7r + 12

� �
ϕ lð Þ + 2ϕ l −mð Þ

+ r − 2ð Þϕ −l −mð Þ + r − 2ð Þϕ lð Þ = r − 2ð Þ ϕ l −mð Þ + ϕ −l −mð Þð Þ
+ r − 2ð Þ 2r − 6ð Þϕ lð Þ + r − 2ð Þ r − 3ð Þϕ −mð Þ

+ −l2 + 3l − 2
2

 !
ϕ lð Þ + ϕ −lð Þ + ϕ −mð Þð Þ,

ð27Þ

for all l,m ∈ L. Adding (26) and (27) and using evenness
of ϕ, then

ϕ l +mð Þ + ϕ l −mð Þ = 2ϕ lð Þ + 2ϕ mð Þ, ð28Þ

for all l,m ∈ L. So the mapping ϕ : L⟶M is quadratic.

In Sections 4 and 5, using L be a normed space andM be
a Banach space. For notational handiness, we define a func-
tion Dϕ : L⟶M by

Dϕ l1, l2,⋯lrð Þ = 〠
1≤i<j<k≤r

ϕ li + l j + lk
� �

− r − 2ð Þ 〠
r

i=1,i≠j
ϕ li + l j
� �

+ −r2 + 3r − 2
2

� �
〠
r

i=1
ϕ lið Þ,

ð29Þ

for all l1, l2,⋯lr ∈ L:

4. Stability of the Functional Equation (2):
Direct Method

In this section, we establish the stability of (2) in a fuzzy
Banach space using a direct method.

Theorem 8. Let β ∈ f−1, 1g . Let χ : Lr ⟶N be a mapping
with

0 < c

32

� �
< 1Φ′ χ 3βκl1 ,3

βκl2 ,⋯,3βκlr
� �

,n
� �

≥Φ′ cβχ l, l,⋯,lð Þ, n
� �

,

ð30Þ

for all l ∈ L and all n > 0, c > 0 and

lim
κ→

Φ′ χ 3βκl1, 3βκl2,⋯,3βκlr
� �

,
�

3βκn
�
= 1, ð31Þ

for all l1, l2,⋯, lr ∈ L and all n > 0. Suppose that a function
Dϕ : L⟶M satisfies the inequality

Φ Dϕ l1, l2,⋯,lrð Þ, nð Þ ≥Φ′ χ l1 ,l2 ,⋯,lrð Þ,nð Þ, ð32Þ

for all n > 0 and l1, l2,⋯, lr ∈ L: Then, the limit

Q lð Þ =Φ − lim
κ→∞

ϕ 3βκl
� �
3βκ

ð33Þ
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exists for all l ∈ L and the mapping Q : L⟶M is a
unique quadratic mapping such that

ϕ ϕ lð Þ −Q lð Þ, nð Þ ≥Φ′ χ l, l,⋯,lð Þ, 3 r3 − 3r2 + 2r
� �

2
n ∣ 32 − c ∣

� �
,

ð34Þ

for all l ∈ L and for all n > 0.

Proof. First, assume that β = 1. Replacing ðl1, l2,⋯,lrÞ by
ðl, l,⋯,lÞ, in (32), we have

Φ
ϕ r3 − 3r2 + 2r
� �

6 ϕ 3lð Þ − 3 r3 − 3r2 + 2r
� �

2 ϕ lð Þ
� �

, n
� �

≥Φ′ χ l,l,⋯,lð Þ,nð Þ,

ð35Þ

for all l ∈ L and for all n > 0. Replacing l by 3κl in
(35), we obtain

Φ
ϕ 3κ+1l
� �
32 − ϕ 3κlð Þ, 2n

3 r3 − 3r2 + 2rð Þ
� �

≥Φ′ χ 3κl, 3κl,⋯,3κlð Þ, nð Þ,

ð36Þ

for all l ∈ L and for all n > 0. Using (30) and (N3) in
(36), we have

Φ
ϕ 3κ+1l
� �
32 − ϕ 3κlð Þ, 2n

3 r3 − 3r2 + 2rð Þ
� �

≥Φ′ χ 3κl, 3κl,⋯,3κlð Þ, n
cκ

� �
,

ð37Þ

for all l ∈ L and for all n > 0; it is easy to verify from
(37) that

Φ
ϕ 3κ+1l
� �
32 κ+1ð Þ −

ϕ 3κlð Þ
32κ , 2n

3 r3 − 3r2 + 2rð Þ32l
� �

≥Φ′ χ 3κl, 3κl,⋯,3κlð Þ, n
cκ

� �
,

ð38Þ

holds for all l ∈ L and for all n > 0. Replacing n by cκn
in (38), we get

Φ
ϕ 3κ+1l
� �
32 κ+1ð Þ −

ϕ 3κlð Þ
32κ , 2vκn

3 r3 − 3r2 + 2rð Þ32κ
� �

≥Φ′ χ 3κl, 3κl,⋯,3κlð Þ, nð Þ,

ð39Þ

for all l ∈ L and for all n > 0; it is easy to see that

ϕ 3κ+1l
� �
32 κ+1ð Þ − ϕ lð Þ = 〠

κ−1

i=0

ϕ 3i+1l
� �
32 i+1ð Þ −

Φ3ix
� �
32i

" #
, ð40Þ

for all l ∈ L. From equations (39) and (40), we get

Φ
ϕ 3κlð Þ
32κ − ϕ lð Þ, 〠

κ−1

i=0

2cin
3 r3 − 3r2 + 2rð Þ32i

 !

≥min
[κ−1
i=1

ϕ 3i+1l
� �
32 i+1ð Þ −

ϕ 3il
� �
32i , 2cin

3 r3 − 3r2 + 2rð Þ32i
( )

≥min
[κ−1
i=1

Φ′ χ l, l,⋯,lð Þ, nð Þ ≥Φ′ χ l, l,⋯,lð Þ, nð Þ,

ð41Þ

for all l ∈ L and for all n > 0. Replacing l by 3ml in
(41) and using (30) and (N3), we obtain

Φ
ϕ 3κ+mlð Þ
32 κ+mð Þ −

ϕ 3mlð Þ
32m , 〠

m+κ−1

i=0

2cin
3 r3 − 3r2 + 2rð Þ32i

 !

≥Φ′ χ l, l,⋯,lð Þ, n
cm

� �
,

ð42Þ

for all l ∈ L and for all n > 0. And all m, κ ≥ 0. Replac-
ing n by cmn in (42), we get

Φ
ϕ 3κ+mlð Þ
32 κ+mð Þ −

ϕ 3mlð Þ
32m , 〠

m+κ−1

i=m

2cin
3 r3 − 3r2 + 2rð Þ32i

 !

≥Φ′ χ l, l,⋯,lð Þ, nð Þ,
ð43Þ

for all l ∈ L and for all n > 0. And all m, κ ≥ 0. Using
(N3) in (42), we have

Φ
ϕ 3κ+mlð Þ
32 κ+mð Þ −

ϕ 3mlð Þ
32m , n

� �

≥Φ′ χ l, l,⋯,lð Þ, n

∑m+κ−1
i=m 2ci/3 r3 − 3r2 + 2rð Þ32i� �

 !
,

ð44Þ

for all l ∈ L and for all n > 0. And all m, κ ≥ 0. Since
0 < c < 32 and ∑κ

i=0ðc/32Þi <∞, the Cauchy criterion for
convergence and (N5) implies that fϕð3κlÞ/32κg is a Cau-
chy sequence in ðM,Φ′Þ is a fuzzy Banach space. This
sequence converges to some point QðlÞ ∈M so one can
define the mapping Q : L⟶M by

Q lð Þ =Φ − lim
κ→∞

ϕ 3βκl
� �
32βκ

, ð45Þ

for all l ∈ L. Letting m = 0 in (44), we receive

Φ
ϕ 3κlð Þ
32κ − ϕ lð Þ, n

� �

≥Φ′ χ l, l,⋯,lð Þ, n

∑κ−1
i=0 cin/3 r3 − 3r2 + 2rð Þ32i� �

 !
,

ð46Þ
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for all l ∈ L. Letting κ⟶∞ in (46) and using (N6),
we have

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≥Φ′ χ l, l,⋯,lð Þ, 3 r3 − 3r2 + 2r
� �

2 n 32 − c
� �� �

,

ð47Þ

for all l ∈ L and for all n > 0. To prove Q satisfies (2),
replacing ðl1, l2,⋯,lrÞ by ð3κl1, 3κl2,⋯,3κlrÞ in (32), we get

Φ
1
3κ Dϕ 3κl1, 3κl2,⋯,3κlrð Þ, r
� �
≥Φ′ χ 3κl1, 3κl2,⋯,3κlrð Þ, 32κn� �

,
ð48Þ

for all n > 0 and all l1, l2,⋯, lr ∈ L, since lim
κ→∞

Φ′ðχð3βκl1,
3βκl2,⋯,3βκlrÞ,32βκnÞ = 1.

Hence, Q satisfies the quadratic functional equation (2),
in order to prove QðlÞ is unique.

We let RðlÞ be another quadratic functional equation sat-
isfying (2) and (34). Hence,

ϕ Q lð Þ − R lð Þ, nð Þ =Φ
Q 3κlð Þ
32κ −

R 3κlð Þ
32κ

� �

≥min Φ
Q 3κlð Þ
32κ −

ϕ 3κlð Þ
32κ , n2

� �	
,Φ ϕ 3κlð Þ

32κ −
R 3κlð Þ
32κ , n2

� �


≥Φ′ χ 3κl, 3κl,⋯,3κlð Þð r3 − 3r2 + 2r
� �

32κn 32 − c
� �

4

�

≥Φ χ l, l,⋯,lð Þ, 3 r3 − 3r2 + 2r
� �

32κn 32 − c
� �

4cκ
� �

,

ð49Þ

for all l ∈ L and for n > 0. Since

lim
κ→∞

3 r3 − 3r2 + 2r
� �

32κn 32 − c
� �

4cκ =∞, ð50Þ

we obtain

Φ′ χ 3κl, 3κl,⋯,3κlð Þð , 3 r3 − 3r2 + 2r
� �

32κn 32 − c
� �

4cκ
�
= 1:

ð51Þ

Thus, ΦðQðlÞ − RðlÞ, nÞ = 1 for all l ∈ L and for n > 0.
Hence, QðlÞ = RðlÞ. Therefore, QðlÞ is unique. For β = −1,
we can prove the result by a similar method. This completes
the proof of the theorem.

The following Corollary 9 is an immediate consequence
of Theorem 8 concerning the stability of (2).

Corollary 9. Suppose that the function Dϕ : L⟶M satisfies
the inequality

ϕ Dϕ l1, l2,⋯,lrð Þ, nð Þ ≥

Φ′ ε, nð Þ,

Φ′ ε〠
r

i=1
lik ks, n

 !
,

Φ′ ε
Yn
i=1

lik ks, r
 !

,

Φ′ ε 〠
r

i=1
lik krs +

Yr
i=1

lik ks
 !

, n
 !

,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð52Þ

for all l1, l2,⋯, lr ∈ L and all n > 0, where ε, s are constants.
Then, there exists a unique quadratic mapping Q : L⟶M
such that

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≥

Φ′ ε, 3 r3 − 3r2 + 2r
� �

2
n 8j j

� �
,

Φ′ rε∥l∥s, 3 r3 − 3r2 + 2r
� �

2
m 32 − 3s
�� ��� �

; s ≠ 2,

Φ′ ε∥l∥rs, 3 r3 − 3r2 + 2r
� �

2
n 32 − 3rs
�� ��� �

; s ≠ 2
r
,

Φ′ ε r + 1ð Þ∥l∥rs, 3 r3 − 3r2 + 2r
� �

2
n 32 − 3rs
�� ��� �

; s ≠ 2
r
,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð53Þ

for all l ∈ L and for n > 0.

5. Stability of the Functional Equation (2):
Fixed-Point Method

In this section, the authors investigate the generalized Ulam-
Hyers stability of the functional equation (2) in fuzzy normed
space using the fixed-point method.

To prove the stability result, we define the following ψi is
a constant such that

ψi =
3 if i = 0,
1
3 if i = 1,

8<
: ð54Þ

and Ω is the set such that ω = fu \ u : L⟶M, uð0Þ = 0g.

Theorem 10. Let Dϕ : L⟶M be a mapping for which there
exists a function χ : Lr ⟶N with condition

lim
κ→∞

Φ′ χ ψκ
i l1, ψκ

i l2,⋯:,ψκ
i lrð Þ, ψκ

i nð Þ = 1, ð55Þ

for all l1, l2,⋯, lr ∈ L, n > 0 and satisfying the inequality

ϕ Dϕ l1, l2,⋯, lrð Þ, nð Þ ≥Φ′ Dϕ l1, l2,⋯, lrð Þ, nð Þ, ð56Þ

for all l1, l2,⋯, lr ∈ L and n > 0.
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If there exists L = L½i� such that the function

l⟶ ρ lð Þ = 2
r3 − 3r2 + 2rð Þχ

l
3
, l
3
,⋯, l

3

� �
ð57Þ

has the property

Φ′ L
i
ψ2
i

ρ ψilð Þ, n
� �

=Φ′ ρ lð Þ, nð Þ ð58Þ

for all l ∈ L and n > 0. Then, there exists a unique qua-
dratic functionQ : L⟶M satisfying the functional equation
(2) and

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≥Φ′ L1−i

1 − L
ρ lð Þ, n

� �
, ð59Þ

for all l ∈ L and n > 0.

Proof. Let c be a general metric on Ω, such that

c u, vð Þ = inf κ ∈
0,∞

ϕ u lð Þ − v lð Þ, nð Þ ≥Φ′ ρ lð Þ, κnð Þ, l ∈ L, l > 0
	 


:

ð60Þ

It is easy to see that Ω, c is complete.
Define W : Ω⟶Ω by WðlÞ = ð1/ψ2

i ÞuðψilÞ, ∀l ∈ L.
For u, v ∈Ω, we get

c u, vð Þ ≤ κ⟹ ϕ u lð Þ − v lð Þ, nð Þ ≥Φ′ ρ lð Þ, κnð Þ
⟹Φ

u ψilð Þ
ψ2
i

−
v ψilð Þ
ψ2
i

, n
� �

≥Φ′ ρ ψilð Þ, κψ2
i n

� �
⟹ ϕ Wu lð Þ −Wv lð Þ, nð Þ ≥Φ′ ρ ψilð Þ, κψ2

i n
� �

⟹ ϕ Wu lð Þ −Wv lð Þ, nð Þ ≥Φ′ ρ lð Þ, κLnð Þ
⟹ c Wu lð Þ,Wv lð Þ, nð Þ ≤ κLn

⟹ c Wu,Wv, nð Þ ≤ κc u, vð Þ, ∀u, v ∈Ω:

ð61Þ

Therefore, W is strictly contractive mapping on Ω with
Lipschitz constant L, replacing ðl1, l2,⋯, lrÞ by ðl, l,⋯, lÞ in
(56), we get

Φ
3 r3 − 3r2 + 2r
� �

6 ϕ 3lð Þ − 3 r3 − 3r2 + 2r
� �

2 ϕ lð Þ, n
� �
≥Φ′ χ l,l,⋯,lð Þ,nð Þ,

ð62Þ

for all l ∈ L and n > 0. Using (N3) in (62), we have

Φ
ϕ 3lð Þ
32 − ϕ tð Þ, n

� �
≥Φ′ 2

3 r3 − 3r2 + 2rð Þχ l, l,⋯, lð Þ, n
� �

,

ð63Þ

for all l ∈ L and n > 0 with the help of (58), when i = 0. It
follows from (63) that

⟹Φ
ϕ 3lð Þ
32 − ϕ tð Þ, n

� �
≥Φ′ Lρ lð Þ, nð Þ⟹ c Wϕ, ϕð Þ ≤ L1−i:

ð64Þ

Replacing l by l/3 in (62), we get

Φ ϕ lð Þ − 32ϕ l
3

� �
, n

� �

≥Φ′ 2
3 r3 − 3r2 + 2rð Þ

�
χ

l
3 ,

l
3 ,⋯, l3

� �
, n

� �
,

ð65Þ

for all l ∈ L and n > 0 when i = 1; it follows from (65); we
arrive

⟹Φ ϕ lð Þ − 32ϕ l
3

� �
, n

� �
≥Φ′ ρ lð Þ, nð Þ⟹ c ϕ,Wϕð Þ ≤ L1−i:

ð66Þ

Then from (64) and (66), we get

⟹c ϕ,Wϕð Þ ≤ L1−i ≤∞: ð67Þ

Now from the fixed-point alternative in both cases, it
follows that there exists a fixed point Q of W in Ω such
that

Q xð Þ =Φ − lim
κ→∞

ϕ ψκlð Þ
ψ2κ , ð68Þ

for all l ∈ L and n > 0. Replacing ðl1, l2,⋯, lrÞ by ðψκ
i l1

, ψκ
i l2,⋯, ψκ

i lrÞ in (56), we get

Φ
1
ψ2κ
i

Dϕ ψκ
i l1, ψκ

i l2,⋯, ψκ
i lrð Þ, n

� �
≥Φ′ χ ψκ

i l1, ψκ
i l2,⋯, ψκ

i lrð Þ, ψ2κ
i n

� �
,

ð69Þ

for all n > 0 and all l1, l2,⋯, lr ∈ L. Utilizing the same pro-
cedure in Theorem 8, we can prove the function Q : L
⟶M is quadratic and it satisfies the functional equation
(2) by a fixed-point alternative, since Q is a unique fixed
point of W in the set Δ = fϕ ∈Ω/cðϕ,QÞ<∞g. Therefore,
Q is a unique function such that

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≥Φ′ ρ lð Þ, κnð Þ, ð70Þ

for all l ∈ L and n > 0. Again using the fixed-point
alternative, we get
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c ϕ,Qð Þ ≤ 1
1 − L

c ϕ,Wϕð Þ⟹ c ϕ,Qð Þ ≤ L1−i

1 − L

⟹ ϕ ϕ tð Þ −Q lð Þ, nð Þ ≥Φ′ ρ lð Þ L1−i

1 − L
, n

� �
:

ð71Þ

This completes the proof.

The following Corollary 11 is an immediate consequence
of Theorem 10 concerning the stability of (2).

Corollary 11. Suppose that the function Dϕ : L⟶M
satisfies the inequality

ϕ Dϕ l1, l2,⋯,lrð Þ, nð Þ ≥

Φ′ ε, nð Þ,

Φ′ ε 〠
r

i=1
lik ks

( )
, n

 !
,

Φ′ ε
Yr
i=1

lik ks
( )

, n
 !

,

Φ′ ε 〠
r

i=1
lik kns +

Yr
i=1

∥li∥
s

( )
, n

 !
,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð72Þ

for all l1, l2,⋯, lr ∈ L and all n > 0, where ε, s are con-
stants. Then, there exists a unique quadratic mapping A : L
⟶M such that

ϕ ϕ lð Þ − A lð Þ, nð Þ ≥

Φ′ ε, 3 r3 − 3r2 + 2r
� �

2
n 8j j

� �
,

Φ′ rε lik ks, 3 r3 − 3r2 + 2r
� �

2
n 32 − 3s
�� ��� �

; s ≠ 2,

Φ′ ε lik krs, 3 r3 − 3r2 + 2r
� �

2
n 32 − 3rs
�� ��� �

; s ≠ 2
r
,

Φ′ ε r + 1ð Þ lik krs, 3 r3 − 3r2 + 2r
� �

2
n 32 − 3rs
�� ��� �

; s ≠ 2
r
,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð73Þ

for all l ∈ L and for n > 0.

Proof. Setting

χ l1, l2,⋯,lrð Þ ≤

ε,

ε 〠
r

i=1
lik ks

( )
,

ε
Yr
i=1

lik ks
( )

,

ε 〠
r

i=1
lik krs +

Yr
i=1

lik ks
( )

,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð74Þ

for all l1, l2,⋯, lr ∈ L. Then,

Φ′ χ ψκ
i l1, ψκ

i l2,⋯,ψκ
i lrð Þ, ψ2κ

i n
� �

=

Φ′ ε, ψK
i n

� �
,

Φ′ ε 〠
r

i=1
lik ks

( )
, ψ 2−sð ÞK

i n

 !
,

Φ′ ε 〠
r

i=1
lik ks

( )
, ψ 2−rsð ÞK

i n

 !
,

Φ′ ε 〠
r

i=1
lik krs +

Yr
i=1

lik ks
( )

, ψ 2−rsð ÞK
i n

 !
,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

=

⟶1 as κ⟶∞,

⟶1 as κ⟶∞,

⟶1 as κ⟶∞,

⟶1 as κ⟶∞,

8>>>>>><
>>>>>>:

ð75Þ

i.e., (55) holds. We have ρðlÞ = ð2/3ðr3 − 3r2 + 2rÞÞχðl/3, l/3,
⋯, l/3Þ that has the property Φ′ðLð1/ψ2

i ÞρðψilÞ, nÞ =Φ′ðρ
ðlÞ, nÞ for all l ∈ L and n > 0. Hence,

Φ′ ρ lð Þ, nð Þ =Φ′ χ
l
3 ,

l
3 ,⋯, l3

� �
, 3 r3 − 3r2 + 2r
� �

2 n
� �

=

Φ′ ε, 3 r3 − 3r2 + 2r
� �

2 n
� �

,

Φ′ rε lk ks, 3 r3 − 3r2 + 2r
� �

2 3sn
� �

,

Φ′ ε lk krs, 3 r3 − 3r2 + 2r
� �

2 3rsn
� �

,

Φ′ ε r+1ð Þ lk krs , 3 r3−3r2+2r
� �

2 3rsn
� �

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð76Þ

Now,

Φ′ 1
ψ2
i

ρ ψilð Þ, n
� �

=

Φ′ ε

ψ2
i

, 3 r3 − 3r2 + 2r
� �

2 n
� �

,

Φ′ rε lk ksψs
i

ψ2
i 3s

, 3 r3 − 3r2 + 2r
� �

2 n
� �

,

Φ′ ε lk krsψrs
i

ψ2
i 3rs

, 3 r3 − 3r2 + 2r
� �

2 n
� �

,

Φ′ r + 1ð Þε lk krsψrs
i

ψ2
i 3rs

, 3 r3 − 3r2 + 2r
� �

2 n
� �

,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
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=

ψ−2
i ρ lð Þ,

ψs−2
i ρ lð Þ,

ψrs−2
i ρ lð Þ,

ψrs−2
i ρ lð Þ,

8>>>>><
>>>>>:

ð77Þ

for all l ∈ L. The following cases hold with the below
conditions:

L = 3−2 if i = 0 and L = 32 if i = 1.
L = 3s−2 for s > 2 if i = 0 and L = 32−s if for s21 if i = 1.
L = 3rs−2 for s > 2/r if i = 0 and L = 32−rs if for s < 2/r if

i = 1.
L = 3rs−2 for s > 2/r if i = 0 and L = 32−rs if for s < 2/r if

i = 1:

Case 1. L = 3−2 if i = 0

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≤Φ′ L1−i

1 − L
ρ lð Þ, n

� �

=Φ′ 3−2
1 − 3−2

2ε
3 r3 − 3r2 + 2rð Þ , n

� �

=Φ′ ε, 24 r3 − 3r2 + 2r
� �

2 n
� �

:

ð78Þ

Case 2. L = 32 if i = 1

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≤Φ′ L1−i

1 − L
ρ lð Þ, n

� �

=Φ′ 1
1 − 33

2ε
3 r3 − 3r2 + 2rð Þ , n

� �

=Φ′ ε, −24 r3 − 3r2 + 2r
� �

2 n
� �

:

ð79Þ

Case 3. L = 3s−2 for s > 2 if i = 0

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≤Φ′ L1−i

1 − L
ρ lð Þ, n

� �

=Φ′ 3s−2
1 − 3s−2

2rε∥l∥s
3 r3 − 3r2 + 2rð Þ3s , n

� �

=Φ′ rε∥l∥s, 3 r3 − 3r2 + 2r
� �

2 32 − 3s
� �

n
� �

:

ð80Þ

Case 4. L = 32−s for s < 2 if i = 1

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≤Φ′ L1−i

1 − L
ρ lð Þ, n

� �

=Φ′ 1
1 − 32−s

2rε∥l∥s
3 r3 − 3r2 + 2rð Þ3s , n

� �

=Φ′ rε∥l∥s, 3 r3 − 3r2 + 2r
� �

2 32 − 3s
� �

n
� �

:

ð81Þ

Case 5. L = 3rs−2 for s > 2/r if i = 0

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≤Φ′ L1−i

1 − L
ρ lð Þ, n

� �

=Φ′ 3rs−2
1 − 3rs−2

2ε∥l∥rs
3 r3 − 3r2 + 2rð Þ3rs , n

� �

= Phi′ ε∥l∥rs, 3 r3 − 3r2 + 2r
� �

2 32 − 3rs
� �

n
� �

:

ð82Þ

Case 6. L = 32−rs for s < 2/r if i = 1

ϕ ϕ tð Þ −Q lð Þ, nð Þ ≤Φ′ L1−i

1 − L
ρ lð Þ, n

� �

=Φ′ 1
1 − 32−rs

2ε∥l∥rs
3 r3 − 3r2 + 2rð Þ3rs n

� �

=Φ′ ε∥l∥rs, 3 r3 − 3r2 + 2r
� �

3rs
2 3rs − 32

� �
n

� �
:

ð83Þ

Hence, the proof is completed.
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