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Abstract

This work investigates the finite-time event-triggered approach for recurrent neural networks with leakage term and its
pplication. Here, decentralized event-triggered framework is recommended where event is checked at every sensor node related
o local information for available triggering and the updated control is done whenever a centralized event is triggered. By
andling the Lyapunov–Krasovskii functional (LKF) method together with novel inequality techniques like Wirtinger single
nd double integral inequality (WSI,WDI) technique, delay productive term (DPT), and a few adequate conditions are acquired
o ensure the finite-time stability (FTS) analysis for the considered system, which is expressed with respect to linear matrix
nequalities (LMIs). At last, numerical simulations are provided to indicate the efficiency of the expected results, two of
hese examples were supported by genuine use of the benchmark issue that correlates with sensible concerns under finite-time
xecution.
c 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Event-triggered; Leakage delay; Lyapunov–Krasovskii functional; Linear matrix inequality; Finite-time stability

1. Introduction

Neural networks (NNs) have gained increased extraordinary consideration due to their potential applications
n pattern grouping, remaking of moving image, and combinatorial optimization. Up till now, there are different
inds of NNs namely Hopfield neural network (HNNs) [1], Cellular neural networks [25], Bidirectional associative
emory neural networks (BAMNNs) [39], Recurrent neural networks(RNNs) [13] and Cohen–Grossberg neural

etwork (CGNNs) [5], have been employed to solve a variety of practical engineering problems. Although RNNs
an be implemented by very large scale integrated circuits, there inevitably exist some delays in neural networks
ue to the limitation of the speed of transmission and switching of signals [43] and [50]. Meanwhile, time delay
s a natural phenomenon frequently experienced in different unique systems, for example, electronic, synthetic
ystems, long transmission lines in pneumatic systems, organic systems, and moving plant systems. Generally,
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delays in NNs may lead oscillation, instability, and divergence, those are all the time in principle sources of terrible
efficiency of designed NNs [17,22,31,36,47]. In fact, the stability analysis issue for RNNs with time delays has
been an attractive research topic in the previous years, where the time delays under attention can be classified as
constant delays, time-varying delays, and distributed delays. Different adequate conditions, either delay-dependent
or delay-independent, have been suggested to ensure the stability conditions for the RNNs with time delays, see
example [3,12,18,34,37,48].

On the other hand, in recent years, research in the stability analysis of NNs involving leakage term has become
ore popular and well known in the field of research, since it was broadly explored by numerous researchers

n different kinds of NNs. It has been surprising to launch that time delays in leakage terms have an essential
mpact on the stability issue and dynamical implementation has been destabilized by leakage term for the structured
Ns [9,10,16]. Thus, it is clear that, dynamic behaviors of system including leakage, could be developed in the
egative input term in the dynamical system, that are outlined back to 1992. Hence, right now, huge number of
emarkable research examinations on the dynamical model in account of leakage term can be found in [21]. From
hat point onward, numerous researchers have been occupied with the assessment of systems over leakage term,
herefore many energizing results can be found in different dynamical systems (see, [32,38,45]). As a first attempt,
nite-time stability examination for event-triggered communication design to general RNNs and leakage term has
een investigated. Recently, in [4], the researchers concentrated on memristive NNs using leakage delay by means
f even-triggered control. Also, the authors of [28], the Arcak-type state estimation issue has been talked about for
ime-delayed static neural networks with leakage delay.

Up to now, enormous results related to stability examination of event-triggered control for various NNs target
n various stability issues (e.g, Lyapunov asymptotic (LA) or exponential), that are described through infinite time
nterval. Not exactly equivalent to the old-style LAS idea, FTS described as the system state omits to overcome

particular bound within the determined finite-time interval [33] and [30]. The introduction of such a stability
hought is fundamental and vital in various practical applications, and the appropriate quantities need to fall within
he decided limits in a fixed-time interval. Numerous studies regarding event-triggered control with both stability
nd stabilization in the finite time issues have been accounted in the previous years [24,27,35,41]. For example, in
oost converter [20], if the current transformation is too much fast, the circuit will breakdown. Besides, substantial
easure of the exceed cannot be associated in various practical engineering [2]. FTS was usually discussed, although
nite-time stabilization is still part of the major deal in control theory. Motivated by the above papers, we arranged

o structure a finite-time event-triggered control for RNNs. The structure of decentralized event-triggered control is
epresented in Fig. 1.

Moreover, event-triggered control (ETC) has received increasing interest in the recent years. To moderate the
nnecessary waste of computation and communication resources in conventional time-triggered control, ETC has
een suggested [6,7,46]. Event-triggered communication design was shown to be a productive method to diminish
he transmitted data information in the systems, which can relieve the burden of network bandwidth occupation
n comparison with a conventional periodic sampling technique. These days, decentralized event-triggered attracts
ommunication renewed attention because of the appearance of reliable wireless network transmission and low
ost microprocessors [29,42,44]. For productive utilization of the limited transmission resources (e.g. battery power
nd/or network bandwidth), it is natural to introduce event-triggered transmission mechanism into decentralized
ase execution to decrease some unnecessary transmissions. In [26], centralized and decentralized global outer-
ynchronizations were achieved by asymmetric recurrent time-varying neural network by data-sampling. Researchers
n [49], studied synchronization of master–slave neural networks with a decentralized even triggered communication
cheme. Thus, designing the decentralized event-triggered communication scheme is important to save the restricted
etwork resources while ensuring the desired performance. Recently, decentralized event-triggered scheme has
eceived a lot of research interest and some significant results have been published [8,23,40]. To the best of author’s
nowledge, up to now, decentralized event-triggered communication scheme for RNNs with time-varying delay and
eakage terms has never been sufficiently tackled, which despite everything stays an engaging subject in the present
esearch. This encourages the present research work.

According to the above mentioned content, we examine the issue of finite-time event-triggered scheme for RNNs
ith time-varying delay and leakage terms. The primary contributions are summarized below:

1) In this work, as a first endeavor, event-triggered control layout is chosen into the RNN model with the time-
arying delay and leakage term approach to examine the finite-time stable performance with respect to L–K stability
heory.
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Fig. 1. Outline of conventional decentralized event-triggered case.

(2) In order to reduce the use of constrained communication resources and develop the transmission efficiency, the
decentralized event-triggered scheme is presented.
(3) By building a suitable LKF, WSII, WDII, DPT term and recent sufficient conditions assured the considered
system is FTS, these are determined on account of LMIs.
(4) To exhibit the genuine application, the quadruple tank process system and circuit system are studied in this work
with respect to the RNN model, to demonstrate feasibility on a benchmark issue, which is acknowledged dependent
on the finite-time stability achievement.
(5) All the adequate conditions are communicated regarding LMIs which can be tackled by use of MATLAB LMI
toolbox. Based on these conditions find out the gain matrices over the constructed ETC.

Notations. A set of fairly standard notations is used in this paper. N and Rn mean the positive integers and
n-dimensional Euclidean space, respectively. Rn×m is the arrangement of n × m real matrices. X > 0 (X ≥ 0)
denotes positive definite (semi-positive definite) matrix X ; the superscripts T and −1 mean the transpose and
inverse of a matrix. ∗ denotes the elements that are introduced due to corresponding symmetry. I means the identity
matrix of the appropriate dimensions and diag{...} means the block-diagonal matrix. MAUBs denote the maximum
allowable upper bounds. λmax (P) or λmin(P) denotes the maximum eigenvalue or the minimum eigenvalue of matrix
P, respectively.

2. System description and preliminaries

Motivated by the discussions above, we consider the recurrent neural networks (RNNs) with time-varying delay
and leakage terms:{

η̇(t) + D(η(t − σ )) = W1 f (η(t)) + W2 f (η(t − ρ(t))) + W3
∫ t

t−ρ(t) f (η(s))ds + u(t),

η(t) = φ(t), −ρ ≤ t ≤ 0
(1)

ere η(t) = [η1(t), η2(t), . . . , ηn(t)]T
∈ Rn is the neural state vector, f (η(t)) is the neuron activation function.

he matrix D = diag(d1, d2, . . . , dn) is a diagonal matrix with di > 0. Interconnection matrices are denoted as
W1, W2, W3 and indicate the weight coefficients of the neurons. u(t) ∈ Rn is the control input, ρ(t) is the time-
arying delay and φ(t) is the initial condition for t ∈ [−d, 0], where d = max[σ, ρ]. All through this research work,
e choose the following assumptions.

ssumption (H1). The activation function fulfills the following condition, there exist constants G−
s and G+

s ,
herefore

G−

s ≤
fs(α1) − fs(α2)

α1 − α2
≤ G+

s , s = 1, 2, . . . , n,

where α , α ∈ R and α ̸= α .
1 2 1 2
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Assumption (H2). The constant leakage delay σ > 0 and time-varying delay ρ(t) satisfy the following conditions:

0 ≤ ρ(t) ≤ ρ, ρ̇(t) ≤ µ1, (2)

here σ, ρ, and µ1 are constants.

In the work, both the inputs (n) and measurement faults η(t) have been gathered through v̄ junction, such that
∈ {1, 2, . . . , v̄} has been indicated ηl(t) ∈ Rn for

∑v̄
l=1 nu = n. Moreover, the lth event generator discharges

oments indicated through [t l
kl

h]∞Kl
= 0 and we check the next release t l

kl+1h of event generator l is controlled by

t l
kl+1h = t l

kl
h + min

l̃∈ Z+

{l̃h|r T
l (t l

kl
h + l̃h)Γ̂lrl(t l

kl
h + l̃h)} > δ̂lη

T
l (t l

K h)Γ̂lηl(t l
K h), (3)

here t l
kl

h is the kl th transmission time instant of the lth transmitter; Z+ is denoted as arrangement of positive
ntegers; Γ̂l > 0 indicates movable factor to decide the limit of the event-triggered transmitter also, connection
mong both present sampling vectors, recent communication can be characterized as

ηl(t l
kl

h + l̃h) = ηl(t l
kl

h + l̃h) − ηl(t l
kl

h).

esides, in (3), above arrangement of {t l
kl

h} is a subgroup of {0, h, 2h, . . .}. Suppose δ̂l is equal to zero, {t l
kl

h}

re equivalents to {0, h, 2h, . . .}. The event-triggered condition in this paper and the sampling are performed
ndependently. In this paper, we are interested in designing the following control input

u(t) = K [η(t1
k1

h) η(t2
k2

h) ... η(tn
kn

h)]T , t ∈ [tkh, tk+1h), (4)

here K ∈ Rm×n is to be determined and

tkh = max
l=1,2,...,v

{t l
kl

h}, tk+1h = min
l=1,2,...,v

{t l
kl+1}h.

et vk = tk+1 − tk . At that point the interval [tkh, tk+1h) can be communicated as

[tkh, tk+1h) =

vk−1⋃
j=0

φl̃ ,

here φl̃ = [tkh + l̃h, tkh + l̃h + h). Furthermore specified φ(t) = t − tkh − l̃h for t ∈ φl . Obviously φ(t) is a
iecewise-linear function fulfilling{

0 ≤ φ(t) ≤ h, t ∈ φl̃ ,

φ̇(t) = 1, t ̸= tkh + lh.
(5)

hus, the threshold error sl(tkh + l̃h) could be revised as

ηl(t − φ(t)) = ηl(t − φ(t)) − ηl(t l
kl

h), t ∈ φl̃ .

ndicate, r (t − φ(t)) = col{r1(t − φ(t)), r2(t − φ(t)) , . . . , rv(t − φ(t))}, such that

u(t) = K (η(t − φ(t)) − r (t − φ(t))), t ∈ φl̃ . (6)

tilizing (6) in (1), we get

η̇(t) = −D(η(t − σ )) + W1 f (η(t)) + W2 f (η(t − ρ(t))) + W3

∫ t

t−ρ(t)
f (η(s))ds

+ K (η(t − φ(t)) − r (t − φ(t))), (7)

or t ∈ ϕl̃ .

emark 2.1. Based on (3), the following condition holds for t ∈ ϕl̃

ηT (t − φ(t)) Γ̂ r (t − φ(t)) ≤ δ̂[η(t − φ(t)) − r (t − φ(t))]T Γ̂ [η(t − φ(t)) − r (t − φ(t))], (8)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ith Γ = diag{Γ1,Γ2, . . . ,Γl̃}, δ = diag{δ1, δ2, . . . , δl̃}.
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To end this section, some definition and primary lemmas are introduced, which are needed in the main results.

efinition 2.2 ([30]). For a given time T > 0, numbers c2 > c1 > 0, and R̃ is a symmetric positive definite matrix,
f there exists control law K = N−1

1 Y , such that the closed-loop system (7) is finite-time stable in the mean square
ense in relation to (c1, c2, T, R̃) if the following connection holds:

sup
−ρ≤s≤0

{φT (s)R̃φ(s), φ̇T (s)R̃φ̇(s)} ≤ c1 ⇒ {ηT (t)R̃η(t)} < c2, ∀t ∈ [0, T ].

emma 2.3 ([22]). For P7 > 0 the following inequality holds for all continuously differentiable function η̂ ∈

a, b] → Rn:

−(b − a)
∫ b

a

˙̂ηT (s)P7
˙̂η(s)ds ≤ −

[
ϱ̃1

ϱ̃2

]T [
P7 0
∗ 3P7

] [
ϱ̃1

ϱ̃2

]
,

here ϱ̃1 = η̂(b) − η̂(a), ϱ̃2 = η̂(b) + η̂(a) −
2

(b−a)

∫ b
a η̂(s)ds.

emma 2.4 ([47]). Let η̂ be the differentiable function: [υ1, υ2] → Rn and for symmetric matrices P4 > 0,
i ∈ R4n×n , the following inequality satisfies:

−

∫ υ2

υ1

˙̂ηT (θ )P4
˙̂η(θ )dθ ≤ ϖ T℧ϖ,

here ℧ = (υ2 − υ1)(M1 P−1
4 M T

1 + 1/3M2 P−1
4 M T

2 + 1/5M3 P−1
4 M T

3 ) + sym{M1℘1 + M2℘2 + M3℘3},

1 = ĕ1 − ĕ2, ℘2 = ĕ1 + ĕ2 − 2ĕ3, ℘3 = ĕ1 − ĕ2 − 6ĕ3 + 6ĕ4, ϖ = [η̂T (υ1) η̂T (υ2) 1
υ2−υ1

∫ υ2
υ1

η̂T (s)ds
2

(υ2−υ1)2

∫ υ2
υ1

∫ θ

υ1
η̂T (θ )dθds].

Lemma 2.5 ([36]). If there exist positive-semi-definite matrices Gi, j ∈ R3n×3n(i, j = 1, . . . , 3), at that point the
ollowing connection holds:

−

∫ t

t−τ (t)
η̇T (s)G33η̇(s)ds ≤

∫ t

t−τ (t)
𭟋T (t)h̄𭟋(t)dt,

here, 𭟋(t) = [ηT (t) ηT (t − τ (t)) η̇T (s)]T and h̄ =

⎡⎢⎣ G11 G12 G13

∗ G22 G23

∗ ∗ 0

⎤⎥⎦ .

emma 2.6 ([31]). Let Q > 0 be any constant matrix, and for given scalars m and n with m < n, the following
elation is very much characterized for any differentiable function η in [m, n] → Rn:

−
n2

− m2

2

∫
−n

−m

∫ t

t+θ

η̇T (s)Qη̇(s)dsdθ ≤ −

[
δa

δb

]T [
Q 0
∗ 2Q

] [
δa

δb

]
,

where

δa = (n − m)η(t) −

∫ t−n

t−m
η(s)ds, δb =

(n − m)
2

η(t) −

∫ t−n

t−m
η(s)ds +

3
(n − m)

∫
−n

−m

∫ t

t+θ

η(s)dsdθ.

Moreover, the primary work of this paper is to design event-triggered control for the recurrent neural network
odel using novel LKF with delay productive type (DPT) term, which is sorted out in the following problem.

roblem 1. Given recurrent neural network (7), achieve finite time stability of the their states η(t) under the event
riggered controller through the following objectives.
1) Novel LKF is introduced with the relation of time-varying delay, leakage term and DPT term.
2) The stabilization conditions with Assumption (H2) are derived which extend the stability region and guarantee
he finite time stable performance.
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(3) Based on the system (7), both the control gain matrix K and event-triggered parameters Γ̂ are determined
herefore, system attains FTS with respect to Definition 2.2.

. Main results

In this part, we will firstly give an adequate condition that guarantees the system (7) is finite time stable. Based
n the condition, we investigated to design the state feedback controller for event triggered scheme. For presentation
onvenience, we indicate

G1 = diag{G−

1 G+

1 , G−

2 G+

2 , . . . , G−

n G+

n }, G2 = diag
{

G−

1 + G+

1

2
,

G−

2 + G+

2

2
, . . . ,

G−
n + G+

n

2

}
,

ei = {0n×(i−1)n In×n 0n×(20−i)n}, i = 1, 2, . . . , 20,

ξ (t) =

[
ηT (t) ηT (t − σ )

∫ t

t−σ

ηT (s)ds ηT (t − ρ(t)) ηT (t − ρ) f T (η(t)) f T (η(t − ρ(t)))
∫ t

t−ρ(t)
η(s)ds∫ t−ρ(t)

t−ρ

η(s)ds
∫ t

t−ρ

f T (η(s))ds
∫ 0

−ρ(t)

∫ t

t+θ

ηT (s)dsdθ

∫
−ρ(t)

−ρ

∫ t

t+θ

ηT (s)dsdθ

∫ t

t−ρ

η(s)ds∫ t

t−ρ

∫ t

t+θ

ηT (s)dsdθ ηT (t − φ(t)) ηT (t − h)
∫ t

t−φ(t)
η(s)ds

∫ t−ρ(t)

t−h
η(s)ds r T (t − φ(t)) η̇(t)

]
,

γ̃1 = η(t) − η(t − ρ(t)), γ̃2 = η(t) + η(t − ρ(t)) −
2

ρ(t)

∫
t−ρ(t)

ηT (s)ds,

γ̃3 = η(t) − η(t − ρ(t)) −
6

ρ(t)

∫ t

t−ρ(t)
ηT (s)ds +

6
ρ2(t)

∫ 0

−ρ(t)

∫ t

t+θ

ηT (s)dsdθ,

γ̃4 = η(t − ρ(t)) − η(t − ρ), γ̃5 = η(t − ρ(t)) + η(t − ρ) −
2

(ρ(t) − ρ)

∫ t−ρ(t)

t−ρ

ηT (s)ds,

γ̃6 = η(t) − η(t − ρ(t)) −
6

(ρ(t) − ρ)

∫ t−ρ(t)

t−ρ

ηT (s)ds +
6

(ρ(t) − ρ)2

∫
−ρ(t)

−ρ

∫ t

t+θ

ηT (s)dsdθ,

γ1 = λmin(P),

γ2 = 2λmax(R−1/2 P R−1/2) + 2σ 2λmax(DT R−1/2 P R−1/2 D) + σλmax(R−1/2 P1 R−1/2)

+
σ 3

2
λmax(R−1/2 P2 R−1/2) + ρλmax(R−1/2 P3 R−1/2) + ρλmax(R−1/2 R1 R−1/2)

+
ρ3

2
λmax(R−1/2 P4 R−1/2) +

ρ3

2
λmax(R−1/2 R2 R−1/2) + ρλmax(R−1/2 Q1 R−1/2)

+ hλmax(R−1/2 P6 R−1/2) +
h3

2
λmax(R−1/2 P7 R−1/2) +

ρ5

2
λmax(R−1/2 P8 R−1/2),

γ3 = 2λmax(P) + 2σ 2λmax(DT P D) + σλmax(P1) +
σ 3

2
λmax(P2) + ρλmax(P3) + ρλmax(R1)

+
ρ3

2
λmax(P4) +

ρ3

2
λmax(R2) + ρλmax(Q1) + hλmax(P6) +

h3

2
λmax(P7) +

ρ5

2
λmax(P8),

φ̂1 = [e1 e5
1

ρ(t)
e8

1
ρ2(t)

e11], φ̂2 = [e4 e5
1

ρ(t)
e9

1
ρ2(t)

e12], ℘1 = P4 − A33, ℘2 = P4 − B33.

heorem 3.1. For scalars σ, ρ, µ1 and h the recurrent neural networks expressed by (1) are FTS in the mean
quare sense for both time-varying delay signals ρ(t) and φ(t) fulfilling (2), if there exist matrices P > 0, Pi >

(i = 1, 2, 3, 4, 6, 7, 8), R1 > 0, R2 > 0, Q1 > 0, V1 > 0, Y > 0, N1 > 0, Γ̂ > 0, any matrices N ∈ R3n×n ,
ositive diagonal matrices β > 0, (l = 1, 2) and semi positive definite matrices A, B ∈ R3n×3n , so as the following
l
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w

inequalities hold:

Ψ =

[ ∑8
i=1 Φi Υ̂

∗ Ω̂

]
< 0, (9)

2γ2c1λmax{R̃}

[
σλmax{D2

}

λmin{P2}
+

eαt

γ1

]
≤ c2, (10)

where

Φ1 = 2[e1 − De3]PeT
20 + e1(W1 − W2)χ1eT

20 + e6(χ1 − χ2)eT
20,

Φ2 = e1 P1eT
1 − e5 P1eT

5 + σ 2e1 P2eT
1 − e3 P2eT

3 ,

Φ3 = e1(P3 + Q1)eT
1 − e4 P3eT

4 c − e5 Q1eT
5 − ρ2e20 P4eT

20 + e6(R1 + ρ2 R2)eT
6

− (1 − µ1)e7 R1eT
7 + sym{N1γ̃1 + N2γ̃2 + N3γ̃3} + sym{N1γ̃4 + N2γ̃5 + N3γ̃6} + Φ33,

Φ4 = e1 P6eT
1 + h2e20 P7eT

20 + Π̂ T
3 (t)Ω2Π̂3(t) + Π̂ T

4 (t)Ω2Π̂4(t),

Φ5 =
ρ4

4
e20 P8eT

20 − Ξ T
1

[
P8 0
∗ 2P8

]
Ξ1,

Φ6 = ρ(e1V1eT
1 − e5V1eT

5 ) − 2(e1 − e5)V1(eT
8 + eT

9 ),

Φ7 = 2[e1 N1 + e20 N1][−eT
20 + DeT

2 + W1eT
6 + W2eT

7 + W3eT
10]

+ [e1LeT
15 − e1LeT

19 + e15LeT
20 − e19LT eT

20],

Φ8 = δ̂[e15 − e19]Γ̃ [e15 − e19]T
− e15Γ̃eT

19,

Υ̂ = {Υ̂1 Υ̂2}, Ω̂ = {Ω̂1, Ω̂2}, Ω̂1 = Ω̂2 = diag{−℘i − 3℘i − 5℘i }, i = 1, 2,

Υ̂1 = [
√

ρ(t)φ̂1N1
√

ρ(t)φ̂1N2
√

ρ(t)φ̂1N3],

Υ̂2 = [
√

(ρ − ρ(t))φ̂2N4
√

(ρ − ρ(t))φ̂2N5
√

(ρ − ρ(t))φ̂2N6],

W1 = diag{W +

1 , W +

2 , . . . , W +

n }, W2 = diag{W −

1 , W −

2 , . . . , W −

n },

Φ33 = e1(ρ(t)A11 + 2A13)eT
1 + 2e1(ρ(t)A12 − A13 + AT

23)eT
4 + e4(ρ(t)A22 − 2A23)eT

4

+ e4((ρ − ρ(t))B11 + 2B13)eT
4 + 2e4((ρ − ρ(t))B12 − B13 + BT

23)eT
5

+ e5((ρ − ρ(t))B22 − 2B23)eT
5 +

[
e1

e6

]T [
−G1β1 G2β1

∗ −β1

] [
e1

e6

]T

+

[
e4

e7

]T [
−G1β2 G2β2

∗ −β2

] [
e4

e7

]T

.

urthermore, the feedback gain K in (6) could be chosen by K = N−1
1 Y

roof. We select the appropriate L–K functional:

V (t) =

5∑
r=1

Vr (t) + Ṽ (t), (11)

here

V1(t) = eαt
[
[η(t) − D

∫ t

t−σ

η(s)ds]T P[η(t) − D
∫ t

t−σ

η(s)ds]

+ 2
n∑

i=1

∫ ηi (t)

0
[ν1i (W +

i (s) − fi (s)) + ν2i ( fi (s) − Wi (s))]ds
]
,

V2(t) = eαt [
∫ t

ηT (s)P1η(s)ds + σ

∫ 0 ∫ t

ηT (s)P2η(s)dsdθ ],

t−σ −σ t+θ
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V3(t) = eαt [
∫ t

t−ρ(t)
[ηT (s)P3η(s) + f T (η(s))R1 f (η(s))]ds

+ ρ

∫ 0

−ρ

∫ t

t+θ

[η̇T (s)P4η̇(s) + f T (η(s))R2 f (η(s))]dsdθ +

∫ t

t−ρ

ηT (s)Q1η(s)ds],

V4(t) = eαt [
∫ t

t−φ(t)
ηT (s)P6η(s)ds + h

∫ 0

−h

∫ t

t+θ

η̇T (s)P7η̇(s)dsdθ ],

V5(t) = eαt [
ρ2

2

∫ 0

−ρ

∫ 0

θ

∫ t

t+λ

η̇T (s)P8η̇(s)dsdλdθ ],

Ṽ (t) = eαt [ρ
∫ t

t−ρ

ηT (s)V1η(s)ds −

∫ t

t−ρ

ηT (s)dsV1

∫ t

t−ρ

η(s)ds].

alculating the time derivative of Vi (t)(i = 1, 2, 3, 4, 5), we get

V̇1(t) = 2eαt [[η(t) − D
∫ t

t−σ

η(s)ds]T P η̇(t) + ηT (t)(W1 − W2)χ1η̇(t) + f T (η(t))(χ1 − χ2)η̇(t)] + αV1(t)

= eαt [ζ T (t)Φ1ζ (t)] + αV1(t), (12)

V̇2(t) = eαt [ηT (t)P1η(t) − ηT (t − σ )P1η(t − σ ) + ηT (t)σ 2 P2η(t) − σ

∫ t

t−σ

ηT (s)P2η(t)] + αV2(t)

≤ eαt [ζ T (t)Φ2ζ (t)] + αV2(t), (13)

V̇3(t) ≤ eαt [ηT (t)P3η(t) − η(t − ρ(t))P3η(t − ρ(t)) + ηT (t)Q1η(t) − ηT (t − ρ)Q1η(t − ρ)

− ρ2η̇T (t)P4η̇(t) − ρ

∫ t

t−ρ

η̇T (s)P4η̇(s)ds + f T (η(t))R1 f (η(t))

− (1 − µ1) f T (η(t − ρ(t)))R1 f (η(t − ρ(t))) + ρ2 f T (η(t))R2 f (η(t))

− ρ

∫ t

t−ρ

f T (η(s))R2 f (η(s))ds] + αV3(t),

≤ eαt [ζ T (t){Φ3 + Φ22 + Φ33}ζ (t)] + αV3(t), (14)

V̇4(t) ≤ eαt [ηT (t)P6η(t) + h2η̇T (t)P7η̇(t)ds − h
∫ t

t−h
η̇T (s)P7η̇(s)ds] + αV4(t),

≤ eαt [ζ T (t){e1 P6eT
1 + h2e20 P7eT

20 + Π̂ T
3 (t)Ω2Π̂3(t) + Π̂ T

4 (t)Ω2Π̂4(t)}ζ (t)] + αV4(t),

≤ eαt [ζ T (t)Φ4ζ (t)] + αV4(t) (15)

nd

˙̃V (t) = eαt [ρ(ηT (t)V1η(t) − ηT (t − ρ)V1η(t − ρ)) − 2((ηT (t) − η(t − ρ))V1(
∫ t

t−ρ(t)
ηT (s)ds

+

∫ t−ρ(t)

t−ρ

ηT (s)ds))] + αṼ (t),

= eαt [ζ T (t)Φ6ζ (t)] + αṼ (t). (16)

y Lemma 2.6, we obtain

V̇5(t) = eαt [
ρ4

4
η̇T (t)P8η̇(t) −

ρ2

2

∫ 0

−ρ

∫ t

t+θ

η̇T (s)P8η̇(s)dsdθ ] + αV5(t)

≤ eαt [
ρ4

4
η̇T (t)P8η̇(t) − Ξ T

1

[
P8 0
∗ 2P8

]
Ξ1] + αV5(t),

≤ eαt [ζ T (t)Φ5ζ (t)] + αV5(t), (17)

here Ξ1 =

[
ρη(t) − ργ̃1(t)

ρ
η(t) − ργ̃ (t) + γ̃ (t)

]
, γ̃1(t) =

∫ t
t−ρ

η(s)ds, γ̃2(t) =
3
ρ

∫ t
t−ρ

∫ t
t+θ

η(s)dsdθ .

2 1 2
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Using Jensen’s inequality the integral terms in (13) and (14), can be written as

− σ

∫ t

t−σ

ηT (s)P2η(t) ≤

(∫ t

t−σ

η(s)ds
)T

P2

(∫ t

t−σ

η(s)ds
)

− ρ

∫ t

t−ρ

f T (η(s))R2 f (η(s))ds ≤

(∫ t

t−ρ

f (η(s))ds
)T

R2

(∫ t

t−ρ

f (η(s))ds
)

.

ince 0 ≤ ρ(t) ≤ ρ, the integral term in (14) can be written in the following aspects:

−

∫ t

t−ρ

η̇T (s)P4η̇(s)ds = −

∫ t

t−ρ(t)
η̇T (s)P4η̇(s)ds −

∫ t−ρ(t)

t−ρ

η̇T (s)P4η̇(s)ds, (18)

tilizing Lemmas 2.4 and 2.5, the following inequality holds:

−

∫ t

t−ρ(t)
η̇T (s)P4η̇(s)ds−

∫ t−ρ(t)

t−ρ

η̇T (s)P4η̇(s)ds

≤ −

∫ t

t−ρ(t)
η̇T (s){P4 − A33}η̇(s)ds −

∫ t−ρ(t)

t−ρ

η̇T (s){P4 − B33}η̇(s)ds,

≤ ζ T (t){φ̂1[ρ(t)N1{P4 − A33}N
T

1 +
ρ(t)

3
N2{P4 − A33}N

T
2

+
ρ(t)

5
N3{P4 − A33}N

T
3 ]T φ̂T

1 + sym{N1γ̃1 + N2γ̃2 + N3γ̃3}

+ φ̂2[(ρ − ρ(t))N1{P4 − B33}N
T

1 +
(ρ − ρ(t))

3
N2{P4 − B33}N

T
2

+
(ρ − ρ(t))

5
N3{P4 − B33}N

T
3 ]T φ̂T

2 + sym{N1γ̃4 + N2γ̃5 + N3γ̃6}}ζ (t),

≤ ζ T (t)Φ22ζ (t). (19)

Employing Lemma 2.5 and Leibniz–Newton formula, we obtain the subsequent inequality

−

∫ t

t−ρ(t)
η̇T (s)A33η̇(s)ds −

∫ t−ρ(t)

t−ρ

η̇T (s)B33η̇(s)ds ≤ ηT (t)(ρ(t)A11 + 2A13)η(t)

+ 2ηT (t)(ρ(t)A12 − A13 + AT
23)η(t − ρ(t))

+ η(t − ρ(t))(ρ(t)A22 − 2A23)ηT (t − ρ(t))

+ ηT (t − ρ(t))((ρ − ρ(t))B11 + 2B13)η(t − ρ(t))

+ 2ηT (t − ρ(t))((ρ − ρ(t))B12 − B13 + BT
23)η(t − ρ)

+ η(t − ρ)((ρ − ρ(t))B22 − 2B23)ηT (t − ρ),

≤ ζ T (t)Φ33ζ (t).

oreover, by using Lemma 2.3 and P7 > 0, the following inequality is obtained:

−

∫ t

t−h
η̇T (s)P7η̇(s)ds = −

∫ t

t−φ(t)
η̇T (s)P7η̇(s)ds −

∫ t−φ(t)

t−h
η̇T (s)P7η̇(s)ds,

≤ −ζ T (t)[Π̂ T
3 (t)Ω2Π̂3(t) + Π̂ T

4 (t)Ω2Π̂4(t)]ζ (t),

here Π̂3(t) =

[
e1 − e15

e1 + e15 −
2

φ(t) e17

]
, Π̂3(t) =

[
e15 − e16

e15 + e16 −
2

h−φ(t) e18

]
, Ω2 =

[
P7 0
∗ 3P7

]
.

In addition, for any dimensioned diagonal matrix βi > 0, i = 1, 2, we obtain from Assumption (H1)

0 ≤

[
η(t)

f (η(t))

]T [
−G1β1 G2β1

∗ −β1

] [
η(t)

f (η(t))

]
,

0 ≤

[
η(t − ρ(t))

f (η(t − ρ(t)))

]T [
−G1β2 G2β2

∗ −β

] [
η(t − ρ(t))

f (η(t − ρ(t)))

]
, (20)
2
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Note that, for any suitable dimensioned matrix N1 the subsequent zero equation holds:

2
[
ηT (t)N1 + η̇T (t)N1

][
−η̇(t) − D(η(t − σ )) + W1 f (η(t)) + W2 f (η(t − ρ(t)))

+ W3

∫ t

t−ρ(t)
f (η(s))ds + K (η(t − φ(t)) − s(t − φ(t)))

]
eαt

= 0,

2eαt
{ζ T (t)Φ7ζ (t)} = 0. (21)

ombining (12)–(21) with (8), we get

V̇ (t) ≤ αV (t) + eαt [ξ (t)TΨξ (t)], (22)

rom (9), we get the following inequality

V̇ (t) ≤ αV (t), (23)

y multiplying e−αt on both sides of (23), we get

e−αt V̇ (t) ≤ e−αtαV (t),

e−αt V̇ (t) − αe−αt V (t) < 0. (24)

aking integration of the above inequality on both sides from 0 to t , we get

e−αt V (t) − V (0) ≤ 0. (25)

oreover, from the definition of V (t) gives

V (t) ≥ eαt [η(t) − D
∫ t

t−σ

η(s)ds]T P[η(t) − D
∫ t

t−σ

η(s)ds]

≥ λmin(P)eαt [η(t) − D
∫ t

t−σ

η(s)ds]T [η(t) − D
∫ t

t−σ

η(s)ds]

≥ λmin(P)∥η(t) − D
∫ t

t−σ

η(s)ds∥2. (26)

oreover,

∥η(t) − D
∫ t

t−σ

η(s)ds∥2
≤ λmax(D2)(

∫ t

t−σ

ηT (s)ds)(
∫ t

t−σ

η(s)ds)

≤ σ
λmax(D2)
λmin(P2)

e−αt
{eαt (

∫ t

t−σ

ηT (s)P2η(s)ds)}

≤ σ
λmax(D2)
λmin(P2)

e−αt
{eαt V (0)}

≤ σ
λmax(D2)
λmin(P2)

{V (0)}. (27)

Here,

V (0) ≤ γ2 sup
−ρ∗≤s≤0

{φ̃T (s)R̃φ̃(s), ˙̃
φT (s)R̃ ˙̃

φ(s)} ≤ γ2c1,

V (0) ≤ γ3∥φ̃∥
2 (28)

where γ2 and γ3 are defined in Theorem 3.1. Therefore from (25) and (26), we get

e−αt V (t) ≤ V (0)

e−αt
{λmin(P)∥η(t) − A

∫ t

t−σ

η(s)ds∥2
} ≤ e−αt V (t) ≤ V (0) ≤ γ2c1. (29)

oreover,

∥η(t)∥2
= 2∥D

∫ t

η(s)ds∥2
+ 2∥η(t) − D

∫ t

η(s)ds∥2.

t−σ t−σ
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From (27)–(29), we get

ηT (t)η(t) ≤ 2γ2c1

(
σ

λmax(D2)
λmin(P2)

+
eαt

λmin(P)

)
,

ηT (t)R̃η(t) ≤ 2γ2c1λmin(R̃)
(

σ
λmax(D2)
λmin(P2)

+
eαt

λmin(P)

)
,

ηT (t)R̃η(t) ≤ c2. (30)

ence the proof.

emark 3.2. We deal with the subsequent system, as an appropriate instance of the system (7) reduced to delayed
Ns with leakage term and can be described as

η̇(t) = −D(η(t − σ )) + W1 f (η(t)) + W2 f (η(t − ρ(t))). (31)

Finite time stable results for neural networks (31) can be achieved in Corollary 3.3:

orollary 3.3. For given σ, ρ, µ1, the system (31) is FTS in the mean square sense for any time-varying delay
ignals ρ(t) fulfilling (2), if there exist matrices P > 0, Pi > 0(i = 1, 2, 3, 4, 8), R1 > 0, R2 > 0, Q1 > 0, V1 > 0,
ny matrices Ni , (i = 1, 2, . . . , 6), positive diagonal matrices βl > 0, (l = 1, 2) and semi positive definite matrices

A, B ∈ R3n×3n so that the subsequent LMIs hold:[ ∑3
i=1 Φi +

∑7
i=5 Φi Υ̂

∗ Ω̂

]
< 0, (32)

2γ2c1λmax{R̃}

[
σλmax{D2

}

λmin{P2}
+

eαt

γ1

]
≤ c2. (33)

Proof. Let P6 = P7 = 0 in Theorem 3.1, we get the finite time stability criterion for system (31). The proof is
ike that of Theorem 3.1. Hence it is excluded.

emark 3.4. In order to save the limited communication resources, we introduce the decentralized event-triggered
cheme for recurrent neural networks. It is important to note that very limited works have been done on event-
riggered scheme with leakage terms under the finite-time stability (FTS) condition. More particularly, several results
ave been reported on event-triggered design for various types on NNs like Markovian jumping NNs [6], memristor
Ns [7], complex valued NNs [42,44], and switched NNs [46]. The model considered in the present study is more
ractical than that proposed by [6,7,42,44,46], because they did not consider finite-time event-triggered recurrent
eural networks (FTETRNNs) with leakage terms. It should be noted that, the criteria proposed in these researches
re restricted to analyzing the finite-time stability of NNs based on control techniques. Moreover, finite-time stability
iffers from asymptotic stability, which admits that the state does not exceed a certain bound during a fixed finite-
ime interval. Based on this scenario, this paper addressed the FTS problem of RNNs subject to decentralized
vent-triggered communication, limited network-bandwidth, and leakage delay. Notably, the implementation of
ecentralized event-triggered scheme improved the performance of the system and also minimized the network
ransmissions. Hence, the analysis technique and system model proposed in this paper deserve much attention to
ll such demands more effectively.

emark 3.5. Based on the results considered in [24,27,41], the feedback control established for ensuring the
stabilization in the sense on FTS of System (1) cannot be developed with the presence of a leakage delay. The
LMIs conditions presented in these researches are not in the form of LMIs when σ ̸= 0 which renders the control
lgorithm more difficult. To solve the previously mentioned issue, the matrix K should be in the accompanying
tructure K = N−1

1 Y . With this type of K , it is easy to find LMI conditions ready to guarantee the FTS of RNNs
n the previously mentioned articles, even a leakage delay is available.

emark 3.6. Primarily, computational complexity will be a major issue dependent on how big are the LMIs and

ow more are the decision variables. However, big size of LMIs yields better execution. The results in Theorem 3.1
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Table 1
MAUB ρ for various values ρ̇(t) and σ in Example 4.1.

µ1 0.1 0.3 0.5 0.7 0.8

σ = 0.05 5.7251 5.3472 5.1203 4.9015 4.8731
σ = 0.1 4.7861 4.7310 4.5681 4.4503 4.3173
σ = 0.15 4.2723 4.1205 3.9672 3.8521 3.6501
σ = 0.2 3.5251 3.2603 3.1752 2.9854 2.7982
σ = 0.25 Infeasible Infeasible Infeasible Infeasible Infeasible

Table 2
MABs ρ for various values µ1 in Example 4.4.

µ1 0.1 0.5 0.9 NODV’s

[12] 3.2793 2.2245 1.5847 12.5n2
+ 5.5n

[43] 3.4886 2.6056 2.2522 7.5n2
+ 5.5n

[18] 3.7857 3.0546 2.6703 30.5n2
+ 15.5n

[50] 4.1840 2.8387 2.3423 20n2
+ 11n

[32] 4.1821 3.1859 2.8905 26.5n2
+ 16.5n

[48] 4.1903 3.0779 2.8268 66.5n2
+ 18.5n

This paper 4.2102 3.1932 2.9572 15.5n2
+ 11.5n

are derived dependent on the development of appropriate L-K functional with DPT, and by utilizing recently
presented integral inequality techniques (WSI, WDI), which increase the size of LMIS (9) and (10); as a result,
some computational complexity can occur in the proposed criterion. It ought to be referenced that the acquired
maximum allowable bounds (MABs) ρ are less conservative than the existing ones in the literature, it can be noted
n Tables 2 and 3. As far the results to be efficient enough it is more comfortable to have MABs ρ but still in order
o reduce computation complexity burden and time computation. Moreover, in the future studies we will focus on
ower computational complexity of the stability problems while maintaining the desired system performances.

emark 3.7. Note that Theorem 3.1 gives an adequate condition to co-plan the filter (3) and the event-triggered
atrix Γ̂ . In addition, it can also be seen that the arrangement of system (7) depends not only on the lower and

pper bounds of the neural network, but also on the upper bound of delay in communication channels, activated
riggering parameters.

. Simulation results

For clarifying the explanation of the proposed results, we will present an explained example in this part to validate
he availability of the developed ETC law.

xample 4.1. Consider the RNNs (7) with the following parameters:

D =

[
5 0
0 4

]
, W 1 =

[
1 0.4

−2 0.1

]
, W2 =

[
0.5 0.7
0.7 0.4

]
, W3 =

[
0.5 −0.3
0.2 1.2

]
,

t is easy to check that Assumption (H1) is satisfied, with f1(x) = tanh(0.7x) − 0.1sinx, f2(x) = tanh(0.4x) +

.2cosx . It can be found that G−

1 = −0.1, G−

2 = −0.2, G+

1 = 0.8, G+

2 = 0.6. The time-delay upper bounds of ρ

or different µ1 and σ are calculated in Table 1. By utilizing the algorithm given below, numerical simulations have
een performed on system parameters to validate the effectiveness of the proposed results.

(i) Select τ = 0.752, µ1 = 0.5, σ = 0.2, h = 0.2, c1 = 2, c2 = 5, and T = 8.
(ii) Simply set the initial value of c2, ρ and verify LMIs (26)–(27).
(iii) Suppose we get the infeasible solution, when solving the LMIs, mean time the value of c2 could be

ramping up and decreases the leakage term σ . Something else, decrease
the value of c until we get the essential value of feasible solutions.
2
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Table 3
MABs ρ for various values of µ1 in Example 4.5.

µ1 0.8 0.9 NODVs

[17] 1.7792 1.6954 60n2
+ 22n

[32] 2.4812 2.4600 26.5n2
+ 16.5n

This paper 2.5201 2.4910 15.5n2
+ 11.5n

Fig. 2. Evolution of system state in Example 4.1 for σ = 0.05.

oreover, by solving LMIs in Theorem 3.1 together with MATLAB LMI procedure, we get the feasible solutions
hich can be listed as follows:

P1 =

[
46.2109 −4.2472
−4.2472 48.9617

]
, P2 =

[
31.7441 −0.3042v

−0.3042 31.2367

]
, P3 =

[
9.6864 1.8941
1.8941 13.5448

]
,

P4 =

[
0.2240 −0.0149

−0.0149 0.4083

]
, P6 =

[
2.7640 −0.0295

−0.0295 3.4885

]
, P7 =

[
95.7850 −5.7439
−5.7439 106.5625

]
,

P8 =

[
0.4291 −0.0262

−0.0262 0.7517

]
, Q1 =

[
4.8820 −0.0401

−0.0401 5.9536

]
, R1 =

[
2.8729 0.3054
0.3054 3.7392

]
,

R2 =

[
6.9950 −0.8534

−0.8534 15.5215

]
, V1 =

[
0.8011 −0.0575

−0.0575 1.1774

]
, P =

[
25.3896 −0.1254
−0.1254 25.8535

]
ased on the solutions, the triggering parameters Γ̂ and controller gain K can be respectively computed out as

Γ̂ =

[
33.2216 −0.0516
−0.0516 33.3679

]
, K =

[
0.5993 −0.0510

−0.0399 0.5277

]
. (34)

nder the initial states [2, −1.5]T , the numerical illustrations of state trajectories η1(t), and η2(t) for the given system
7) are shown in Fig. 2. It ought to be referenced that, the maximum admissible value of leakage delay is 0.05 and
(t) = 5.0203+0.1cos(t). Figs. 3–5 indicate the state trajectories for the delays ρ(t) = 4.4681+0.1cos(t), ρ(t) =

.8672 + 0.1cos(t) and ρ(t) = 3.0752 + 0.1cos(t) corresponding to 0.1, 0.15 and 0.2, respectively. Moreover, from
able 1, it can be easily verified that as leakage delay progressively increases, the calculated time-delay upper
ounds of ρ get the infeasible value. Further, when σ = 0.25 the unstable behavior of the given system is predicted
n Fig. 6. Fig. 7 exhibits the dynamical reaction of the control input. Additionally, the adequacy of results appeared

T ˜ T ˜
hrough the simulation results of η (t)Rη(t) in Figs. 8 and 9. The initial conditions satisfy η (0)Rη(0) = c1 = 0.9
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Fig. 3. Evolution of system state in Example 4.1 for σ = 0.1.

Fig. 4. Evolution of system state in Example 4.1 for σ = 0.15.

nd the state trajectories of ηT (t)R̃η(t) = c2 = 8.5. Henceforth, it can be reasoned that the proposed neural networks
7) are FTS. Notice that the system is stable as revealed by our theoretical results.

xample 4.2. Fundamentally, NNs show the propensity of certain biological neurons that have been associated or
ractically connected in a nervous system. Then again, NNs can be implemented together with biological neurons as
ell as a portion of the applicable models. One of them is the quadruple-tank process, which is depicted in Fig. 10.
he quadruple-tank process comprises of four interconnected water tanks and two pumps. Along these (µ1 and µ2)

denotes inputs voltages to the pumps 1 and 2, and the outputs are θ1 and θ2 (voltages from level estimation devices).
As shown in Fig. 10, NN model utilizing the quadruple-tank process can be shown evidently. [14,15,19] suggested
the state–space condition of the quadruple-tank process and developed the state feedback controller in the following
way:

η̇(t) = Ã η(t) + Ã x(t − ρ̂ ) + B̃ u(t − ρ̂ ) + B̃ u(t − ρ̂ ), (35)
0 1 1 0 2 1 3
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Fig. 5. Evolution of system state in Example 4.1 for σ = 0.2.

Fig. 6. Evolution of system state in Example 4.1 for σ = 0.25.

Fig. 7. Response of the control input in Example 4.1.
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Fig. 8. State trajectory of ηT (t)R̃η(t) in Example 4.1.

Fig. 9. Evolution of ηT (t)R̃η(t) in Example 4.1.

where the parameters are given as follows:

Ã0 =

⎡⎢⎢⎢⎣
−0.0021 0 0 0

0 −0.0021 0 0
0 0 −0.0424 0
0 0 0 −0.0424

⎤⎥⎥⎥⎦ , Ã1 =

⎡⎢⎢⎢⎣
0 0 0.0424 0
0 0 0 0.0424
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ ,

B̃0 =

[
0.1113θ1 0 0 0

0 0.1042θ2 0 0

]T

, B̃1 =

[
0 0 0 0.1113(1 − θ1)
0 0 0.1042(1 − θ2) 0

]T

,

K̃ =

[
−0.1609 −0.1765 −0.0795 −0.2073
−0.1977 −0.1579 −0.2288 −0.0772

]
, θ1 = 0.333, θ2 = 0.307, u(t) = K̃ x̃(t).

oreover, the transport delays within the tanks and valves change in terms of time-varying. In this regard the
ontrol issue, leakage delays can be tackled in QTPS (in terms of the water intake to the tanks) and are significant
n our real life. For the simplicity, we pick both τ̂1 = τ̂2 are zero and τ̂3 = ρ(t). Since u(t) thereby the quantity of
ater is provided by the pumps. Along these lines, it is normally a nonlinear function and can be represented in
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Fig. 10. Overview of the QTP model.
Source: From [15].

the following way:

u(t) = K̃ g(η(t)),
g(η(t)) = [g1(η(t)), . . . , g4(η(t))],

g j (ηe(t)) =
0.5
5

(|η j (t) + 1| − |η j (t) − 1|), j = 1, 2, . . . , 4.

The Quadruple-tank process (35) can be modeled in the following way:

η̇(t) = −Dη(t − σ ) + W1 f (η(t)) + W2 f (η(t − ρ(t))), (36)

here D = −Ã0 − Ã1, W1 = B̃0 K̃ , W2 = B̃1 K̃ , f (·) = g(·). Furthermore, by taking the values W3 =

0 0 0 0]T , G1 = 04, G2 = 0.1I4, µ1 = 0.3, ρ = 0.5, for various σ = 0.1, 0.15, 0.2, 0.25, 0.3 then the LMIs
n Corollary 3.3, and we found that the QTPS (36) is FTS. Figs. 11–15 exhibit the state responses of the system
onverge to zero. From Figs. 11–15, it is clear that for a small amount of the leakage term the QTPS is actually
table. Suppose, if we increase the amount of the leakage term the state trajectories get some effects (because of the
eakage term) thus reducing the system performance gradually, which can be shown in Figs. 16–18. Similarly, for
eakage delay increases σ = 0.35, 0.4, 0.5, the state responses of the systems are divergences from the equilibrium
oint, these are represented in Figs. 16–18. In addition, time history of ηT (t)R̃η(t) has been depicted in Fig. 19,
small amount of leakage term can keep the QTPS performance as stable and unstable for the large amount of

eakage term. Thus, from the simulation results, it is guaranteed that leakage delay has a noteworthy impact on the
TPS.
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Fig. 11. Evolution of system state in Example 4.2 for σ = 0.05.

Fig. 12. Evolution of system state in Example 4.2 for σ = 0.1.

Example 4.3. A continuous-time artificial NN containing n units is described by the following differential
equations [11]:{

dηi (t)
dt = −

ηi (t)
Ri Ci

+
∑n

j=1 Wi j y j (t) + ui (t)

yi (t) = fi (ηi (t))
(37)

n view of the results acquired in [11], system (37) can be executed by an analog resistance–capacitance network
ircuit (RCNC) as portrayed in Fig. 20, with

• ηi represents the input voltage of the ith amplifier
• Vi = fi (ηi (t)) signifies the output voltage of the i th amplifier, where every operational amplifier has double

output terminals that are supplying V and −V .
i i
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w

Fig. 13. Evolution of system state in Example 4.2 for σ = 0.15.

Fig. 14. Evolution of system state in Example 4.2 for σ = 0.2.

• Ri and the weight parameter wi j are modeled in the following way:

1
Ri

=
1
σi

+

n∑
j=1

1
Ri j

Wi j =

{
+

1
Ri j

, Ri j is connected to V j

−
1

Ri j
, Ri j is connected to − V j

Therefore, the system (37) can be rewritten as

η̇(t) = −Dη(t) + W1 f (η(t)) + W2u (38)

ith

D =

[ 1
R1C1

0

0 1
R C

]
, W1 =

⎡⎣ W11
C1

W12
C1

W21
C2

1
W21

⎤⎦ , W2 =

[ 1
C1

0

0 1
C

]

2 2 C2 2
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Fig. 15. Responses of the system state in Example 4.2 for σ = 0.25.

Fig. 16. Evolution of system state in Example 4.2 for σ = 0.3.

Time constant of the i th neuron has been depicted as Ri Ci = ρi , i = 1, 2, . . . , n and represenst the convergence
of ηi . When ρi = ρ for every neuron, each value for σi would have to be taken in such a way that it compensates
for these variations and maintains Ri the same for every neuron. The output Vi may immerse rapidly because the
transfer function has a very high gain of potentially. Consequently, even if ηi is still far to achieve its equilibrium,
Vi may show up as though the circuit had converged in simply a small amount of ρi . Given the HDNNs outlined
by (38) through the group of parameters:

Ri = Ci , i = 1, 2

W1 =

[
1 1.5

−1.5 −1

]
, fi (t) = tanh(t),

which implies G1 = 0, G2 = 0.5I and utilizing Matlab LMI toolbox and solving the LMIs in Corollary 3.3, a
group of feasible solution can be acquired. Along these lines, it can be concluded that Corollary 3.3 infers that
784



R. Vadivel, P. Hammachukiattikul, G. Rajchakit et al. Mathematics and Computers in Simulation 182 (2021) 765–790
Fig. 17. Evolution of system state in Example 4.2 for σ = 0.4.

Fig. 18. Evolution of the system state in Example 4.2 for σ = 0.5.

Fig. 19. State trajectory of ηT (t)R̃η(t) in Example 4.2.
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Fig. 20. Circuit for neuron i in the analog execution of Hopfield DNN.

Fig. 21. Evolution of the system state in Example 4.3.

Fig. 22. Time history of ηT (t)R̃η(t) for the system (38).

system (38) is finite time stable. The state responses of system (38) and responses of ηT (t)R̃η(t) are shown in a
row in Figs. 21 and 22 with the initial condition η(s) = [2, −1.5]T .
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Example 4.4. Consider the following four-neuron RNN system (31) with the matrix parameters in [30]:

D = diag{1.7269, 0.6231, 0.9230, 0.4480}, W1 =

⎡⎢⎢⎢⎣
−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

⎤⎥⎥⎥⎦ ,

W2 =

⎡⎢⎢⎢⎣
0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

⎤⎥⎥⎥⎦ ,

G2 = 0, G1 = diag{0.1137, 0.1279, 0.7994, 0.2368}

ollowing the LMIs in Corollary 3.3 with σ = 0 choose the activation functions f (x) = [0.0568(|η1 + 1| −

η1 − 1|), 0.0640(|η2 + 1|−|η2 − 1|), 0.3997(|η3 + 1|−|η3 − 1|), 0.1184(|η4 + 1|−|η4 − 1|)]T . For different values
1, the MABs ρ of ρ(t) obtained by various methods are summarized in Table 2. From Table 2, clearly Corollary 3.3
rovides larger MABs than those in [12,18,43,48,50], which suggests Corollary 3.3 in this paper is less conservative.
ig. 23 represents the state response of variables η1(t), η2(t), η3(t) and η4(t) for the system (31) with an initial
ondition η(t) = [11.8, 1.5, −2.3, 0.5]T . The time history ηT (t)R̃η(t) is provided in Fig. 24. In addition, it is
orth pointing out that our stability criterion involves less number of decision variables (NODVs) than those

n [12,18,43,48,50]. Therefore, with reference to Figs. 23, 24 and Table 2, it is evident that system (31) is FTS.

xample 4.5. Consider the following RNNs (31) with the matrix parameters in [32]:

D = diag{1.1, 0.8, 0.7, 1.2, 1.2, 2},

W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.01 0 −0.4 0 0.05 0
0.11 0 −0.05 0 0.3 0
0.03 0 −0.7 1.2 0.11 0
1.02 0 −0.55 0.07 0.36 0
0.02 0.02 −0.01 −0.01 −0.03 0
0.15 0.13 0 0 −0.08 0.07

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.34 −0.2 0.4 0.7 −0.03 0.35
−0.24 0.56 0.67 −0.5 0.78 −0.88
0.12 0.23 0.05 −0.70 0.5 0
0.08 0.55 −0.64 0.03 0.77 0.21
0.04 0.08 0.75 0.03 0.01 0.02
1.01 0.07 0.08 0.32 0.14 −0.02

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G2 = 0, G1 = diag{0.5, 0.5, 0.5, 0.4, 0.4, 0.4}.

y solving Example 4.5 utilizing LMIs in Corollary 4.5 with σ = 0, we get MABs ρ of ρ(t) obtained by the method
n [17,32] and Corollary 3.3 in this paper is given in Table 3. Table 3 shows Corollary 3.3 is less conservative than in
efs [17] and [32]. The NODVs required in Theorem 1 in [17] are 60n2

+22n, Corollary 1 in [32] is 26.5n2
+16.5n

nd Corollary 3.3 in this paper just requires 15.5n2
+11.5n decision variables, which clearly shows the effectiveness

f our work.

. Conclusion

Finite time stability analysis has been discussed for event triggered RNNs with time-varying delay and leakage
erms, so as to demonstrate the FTS of the proposed system, lot of techniques such as the method of WSI, WDI
echnique, DPT, Lyapunov stability theory, and Jensen inequality approaches have been effectively utilized in this
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Fig. 23. State trajectory of system (31) with σ = 0 in Example 4.4.

Fig. 24. Time history of ηT (t)R̃η(t).

work, which are stated with respect to LMIs to show the feasibility of this paper. At last, to exhibit the adequacy of
the proposed results, standard numerical examples are examined with real life application problems. In the future,
it is an interesting task to extend the proposed method for dealing with some practical systems, such as offshore
platforms, multi-robot formation control systems, multi-agent systems, load frequency control systems, coupled
neural networks with imperfect communication, such as packet dropouts and quantization and PMSM model, which
makes the model more practical. We will also concentrate on the discrete time matters for the networked control
system and finite time issues for networked control switched system under an improved ETS are additional goals
for the further investigation.
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