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)is paper deals with the global asymptotic robust stability (GARS) of neural networks (NNs) with constant time delay via
Frobenius norm.)e Frobenius norm result has been utilized to find a new sufficient condition for the existence, uniqueness, and
GARS of equilibrium point of the NNs. Some suitable Lyapunov functional and the slope bounded functions have been employed
to find the new sufficient condition for GARS of NNs. Finally, we give some comparative study of numerical examples for
explaining the advantageous of the proposed result along with the existing GARS results in terms of network parameters.

1. Introduction

Neural networks (NNs) operate on principles similar to the
human nervous system. It has a huge number of processors.
)ese types of processors operate in parallel and are orga-
nized in layers.)e initiating layer takes raw input, similar to
the raw information received by humans. All subsequent
layers receive input from the layer before it. Again, pass the
output to the next layer. Finally, the end layer sends the final
output. Most nodes are interconnected in layers.

NNs have been studied by many of the researchers
because of their applications in different fields. )e modern
technology is mostly based on computational models which
are known as artificial neural networks (ANNs). Nowadays
artificial intelligence plays the most important role in
electrical and electronics world. ANNs are the backbone of

this artificial intelligence. In recent years, the role of ANNs
has been developed due to their applications in various
disciplines. )e machine learning uses the distinct variety of
NNs such as Feedforward NNs—artificial neuron, radial
basis function NNs, multilayer perceptron, convolutional
NNs, recurrent neural networks (RNNs), modular NNs, and
sequence-to-sequence models. Moreover, NNs have wide
applications in engineering areas [1–6] such as radar sys-
tems, signal classification, 3D reconstruction, face identifi-
cation, object recognition, medical diagnosis, visualization,
machine translation, combinatorial optimization, and signal
processing. Also they may have great applications in non-
engineering areas such as sales forecasting, risk manage-
ment, and target marketing.

In NNs, time delay plays an important role in different
areas such as video lip reading and speech recognition. Due
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to this delay parameter, the convergence of solution of the
given system can be affected. )e convergence of solution of
neural system is to make the NNs to be stable. So, the
concept of global stability analysis plays an important role in
the convergence of solution of NNs. Also that the different
kinds of stability analysis such as global asymptotic robust
stability (GARS), exponential stability, and complete sta-
bility of NNs, have been studied by many researchers in
[7–14].)ese different types of stability results of the delayed
NNs have been discussed based on the methods of Lyapunov
stability theory, linear matrix inequalities, nonsmooth
analysis, and M-matrix theory in the previous literature.
)erefore, the GARS analysis of NNs under parameter
uncertainties is the most important problem. Recently, it has
been exclusively studied by many authors in [15–34].

From the motivation of the above concepts, GARS of
NNs has been investigated in this paper.)e objective of this
paper is to obtain a new sufficient condition for the GARS of
the equilibrium point of the delayed neural system using the
Lyapunov stability theory and Frobenius norm under pa-
rameter uncertainties. )e Frobenius norm is always an
upper bound for the spectral norm (‖ · ‖2). Moreover, the
Frobenius norm is much easier to compute than the spectral
norm. For calculating the Frobenius norm, it is not necessary
to find the eigenvalues rather by using the traces (sum of the
diagonals of a matrix). So, the calculation of finding ei-
genvalues is pretty difficult for higher dimensional matrices.
Moreover, some matrices having real entries may give
complex eigenvalues. By utilizing the Frobenius norm, we
avoid such situations. )erefore, the Frobenius norm is
important for calculating the upper bound of connection
weight matrices. By utilizing the concept of homeomor-
phism, we find a new sufficient condition for the existence
and uniqueness of the equilibrium point of NNs. Finally, we
will give some comparative studies of numerical example to
illustrate the effectiveness of our results for the NNs.

We apply the following notations for the norm of vectors
and matrices: let w � (w1, w2, . . . , wn)T ∈ Rn. )e most
common vector norms ‖w‖1, ‖w‖2, and ‖w‖∞ which are
defined as follows: ‖w‖1 � 􏽐

n
i�1 |wi|, ‖w‖2 � (􏽐

n
i�1 w2

i )1/2, and
‖w‖∞ � max1≤i≤n|wi|. Let S � (sij)n×n. )e following are the
definitions for ‖S‖1, ‖S‖2, ‖S‖∞, and ‖S‖F. ‖S‖1 � max1≤j≤n
􏽐

n
i�1 |sij|, ‖S‖2 � [λmax(STS)]1/2, ‖S‖∞ � max1≤i≤n 􏽐

n
j�1 |sij|,

and ‖S‖F �
������
tr(STS)

􏽰
�

������
tr(SST)

􏽰
. For any vector

w � (w1, w2, . . . , wn)T, |w| is defined as |w| � (|w1|, |w2|,

. . . , |wn|)T. For any matrix S � (sij)n×nwith real entries |S|

will be defined as |S| � (|sij|)n×n. )e minimum and maxi-
mum eigenvalues of S are denoted by λmin(S) and λmax(S),
respectively. tr(S) be the trace of the matrix S. )at is, the
sum of the diagonal values of the matrix S. If S � (sij)n×n is a
symmetric matrix and wTSw> 0(≥ 0), for any real vector
w � (w1, w2, . . . , wn)T, then S is said to be positive definite
matrix (positive semidefinite matrix). Consider the two
positive definite matrices H � (hij)n×n and S � (sij)n×n.
)en, H< S implies that wTHw<wTSw for any real vector
w � (w1, w2, . . . , wn)T.

2. Problem Statement and Fundamentals

In this paper, we consider the following delayed neural
networks:

dwi(t)

dt
� − ciwi(t) + 􏽘

n

j�i

dijfj wj(t)􏼐 􏼑 + 􏽘
n

j�i

rijfj wj(t − τ)􏼐 􏼑 + Ji,

(1)

where i � 1, 2, . . . , n and n denotes the total neurons. wi(t)

denotes the ith neuron state of the vector at time t. ci rep-
resents the rate of charge for the ith neuron. rij and dij are the
connection weight matrices with and without time delay,
respectively. fj(·) denotes the activation functions at time t

and t − τ. Here τ denotes the constant time delay. Ji rep-
resents the vector with constant input between the neurons.

)e matrix vector form of equation (1) is as follows:

w
.
(t) � − Cw(t) + Df(w(t)) + R(fw(t − τ) + J), (2)

where C � diag(ci > 0), w(t) � [w1(t), w2(t), . . . , wn

(t)]T ∈ Rn, R � (rij) ∈ Rn×n, D � (dij) ∈ Rn×n, f(w(t)) �

[f1(w1(t)), f2(w2(t)), . . . , fn(wn(t))]T ∈ Rn, and
f(w(t − τ)) � [f1(w1(t − τ)), f2(w2(t − τ)), . . . , fn (wn

(t− τ))​ ]]T ∈ Rn, J � [J1, J2, . . . , Jn]T ∈ Rn. )e initial
condition is w(t) � ϕ(t) ∈ C([− τ, 0],Rn), and C([− τ,

0],Rn) denotes all continuous functions from [− τ, 0] to Rn.
)e most common approach for handling the delayed

neural system is to make the connection weight matrices
D � (dij)n×n and R � (rij)n×n, and the matrix
C � diag(ci > 0) in an interval as follows:

CI � C � diag ci( 􏼁: 0<C≤C≤C, ie., 0< ci ≤ ci ≤ ci, i � 1, 2, . . . , n􏽮 􏽯,

DI � D � dij􏼐 􏼑: D ≤D≤D, ie., dij ≤dij ≤dij, i, j � 1, 2, . . . , n􏽮 􏽯,

RI � R � rij􏼐 􏼑: R ≤R≤R, ie., rij ≤ rij ≤ rij, i, j � 1, 2, . . . , n􏽮 􏽯.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

Assumption 1. (see [24]). )e activation functions fi are
assumed to be slope bounded; that is, there exist some
positive constants ki such that the following conditions hold:

0≤
fi(w) − fi(v)

w − v
≤ ki, ∀w, v ∈ R, w≠ v, i � 1, 2, . . . , n.

(4)
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)is class of functions will be denoted by f ∈ k. )e
functions of this class do not require to be bounded, dif-
ferentiable, and monotonically increasing.

Lemma 1 (see [29]). Let w(t) � [w1(t), w2(t), . . . ,

wn(t)]T ∈ Rn. IfD ∈ DI be the matrix defined as in equation
(3), then for any positive diagonal matrix and a nonnegative
diagonal matrix , the following inequality holds:

w
T
MD + D

T
M􏼐 􏼑w≤w

T
M D

∗
− Υ( 􏼁 + D

∗
− Υ( 􏼁

T
M + M D∗ + Υ( 􏼁 + D∗ + Υ( 􏼁

T
M

�����

�����2
I􏼒 􏼓w, (5)

where D∗ � (1/2(D + D)) and D∗ � (1/2(D − D)).

Lemma 2 (see [24]). If G(x) ∈ C0 (C0 means that the set of
continuous functions onRn) satisfies the following conditions,
then G(x) is a homeomorphism on Rn:

(i) G(x) is an injective mapping on Rn

(ii) ‖G(x)‖⟶∞ as ‖x‖⟶∞

3. Existence and Uniqueness of
Equilibrium Point

)is section will focus on the new sufficient condition for the
existence of equilibrium point of our model (2) which is
unique. By using the Frobenius norm, we prove a new
sufficient condition for existence of equilibrium point of our
NNs model (2) which is unique.

Theorem 1. Suppose that f ∈ k and there exist matrices
K � diag(ki > 0),M � diag(mi > 0), and Υ � diag(ci ≥ 0)

such that

Ω1 � 2CMK
− 1

− M D
∗

− Υ( 􏼁 + D
∗

− Υ( 􏼁
T
M + M D∗ + Υ( 􏼁 + D∗ + Υ( 􏼁

T
M􏼐 􏼑

�����

�����2
I􏼒 􏼓

− 2 Mmax‖
􏽢R‖F􏼐 􏼑I> 0,

(6)

where Mmax � maximum(mi),D
∗ � 1/ 2(D + D),D∗ �

1/2(D − D), and 􏽢R � (􏽢rij) with 􏽢rij � max(|rij|, |rij|). )en,
for each constant vector J, the neural network model (2)
satisfying (3) has a unique equilibrium point.

Proof. Define the following map:

G(w) � − Cw + Df(w) + Rf(w) + J. (7)

G(w) � 0 is equivalent to _w � 0. Here every solution of
G(w) � 0 is an equilibrium point of system (2). For proving
this theorem, it is enough to prove that G(w) is a ho-
meomorphism on Rn.

Let w, v ∈ Rn be the two vectors such that w≠ v.
)en,

G(w) − G(v) � − C(w − v) + D(f(w) − f(v))

+ R(f(w) − f(v)).
(8)

If f ∈ k, w≠ v then, f(w) − f(v) � 0 or f(w)− f(v)≠ 0.
First, let us consider w≠ v and f(w) − f(v) � 0. From
equation (8), we have

G(w) − G(v) � − C(w − v). (9)

Since w≠ v and C � diag(ci > 0). )erefore, from
equation (9), G(w)≠G(v). Next, let us consider w≠ v and
f(w) − f(v)≠ 0 and multiply (9) by 2(f(w) − f(v))TM;
we get

2(f(w) − f(v))
T
M(G(w) − G(v)) � − 2(f(w) − f(v))

T
MC(w − v) + 2(f(w) − f(v))

T

MD(f(w) − f(v)) + 2(f(w) − f(v))
T
MR(f(w) − f(v)) � − 2(f(w) − f(v))

T
MC(w − v)

+(f(w) − f(v))
T
MD + D

T
M􏼐 􏼑(f(w) − f(v))

+ 2(f(w) − f(v))
T
MR(f(w) − f(v)).

(10)
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)en, we get

2(f(w) − f(v))
T
MC(w − v) � 2􏽘

n

i�1
mici fi wi( 􏼁 − fi vi( 􏼁( 􏼁 wi − vi( 􏼁

≥ 2􏽘

n

i�1

mici

ki

fi wi( 􏼁 − fi vi( 􏼁( 􏼁 � 2(f(w) − f(v))
T

CMK
− 1

(f(w) − f(v)),

− 2(f(w) − f(v))
T
MC(w − v)≤ − 2(f(w) − f(v))

T
CMK

− 1
(f(w) − f(v)).

(11)

From Lemma 1, we get

(f(w) − f(v))
T
MD + D

T
M􏼐 􏼑(f(w) − f(v))≤ (f(w) − f(v))

T

· M D
∗

− Υ( 􏼁 + D
∗

− Υ( 􏼁
T
M + M D∗ + Υ( 􏼁 + D∗ + Υ( 􏼁

T
M

�����

�����2
I􏼒 􏼓

· (f(w) − f(v)).

(12)

2(f(w) − f(v))
T
MR(f(w) − f(v)) � 􏽘

n

i�1
􏽘

n

j�1
2mirij fi wi( 􏼁 − fi vi( 􏼁( 􏼁 fj wj􏼐 􏼑 − fj vj􏼐 􏼑􏼐 􏼑

≤ 2Mmax 􏽘

n

i�1
􏽘

n

j�1
􏽢rij fi wi( 􏼁 − fi vi( 􏼁( 􏼁 fj wj􏼐 􏼑 − fj vj􏼐 􏼑􏼐 􏼑

≤ 2Mmax‖
􏽢R‖F

����(f(w) − f(v))
T
(f(w) − f(v)).

(13)

Applying the results (11)–(13) in (10), we get

2(f(w) − f(v))
T
M(G(w) − G(v))≤ − 2(f(w) − f(v))

T

CMK
− 1

(f(w) − f(v)) +(f(w) − f(v))
T

M D
∗

− Υ( 􏼁 + D
∗

− Υ( 􏼁
T
M + M D∗ + Υ( 􏼁 + D∗ + Υ( 􏼁

T
M

�����

�����2
I􏼒 􏼓

(f(w) − f(v)) + 2Mmax‖
􏽢R‖F(f(w) − f(v))

T
(f(w) − f(v))

� − (f(w) − f(v))
TΩ1(f(w) − f(v)).

(14)

Given that Ω1 > 0, we have

2(f(w) − f(v))
T
M(G(w) − G(v)) ≤ − λmin Ω1( 􏼁‖(f(w) − f(v))‖

2
2, (15)

where λmin(Ω1) is the smallest eigen value of the positive
definite matrix Ω1. If f(w) − f(v)≠ 0 and λmin(Ω1)> 0,
then it follows from (14) that 2(f(w) − f(v))T M (G (w)

− G(v))< 0.

)erefore, G(w)≠G(v) for all w≠ v. Hence G is injective on
Rn. Now, we prove that ‖G(w)‖⟶∞ as ‖w‖⟶∞. For
this, let v � 0 in (15) which implies that
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2(f(w) − f(0))
T
M(G(w) − G(0))≤ − λmin Ω1( 􏼁‖(f(w) − f(0))‖

2
2,

2(f(w) − f(0))
T
M(G(w) − G(0))

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ λmin Ω1( 􏼁‖(f(w) − f(0))‖
2
2.

(16)

From the above inequality, we write

2‖M‖∞‖f(w) − f(0)‖∞‖G(w) − G(0)‖1

> λmin Ω1( 􏼁‖(f(w) − f(0))‖
2
2.

(17)

By applying the properties of norm for the above in-
equalities, we have

‖f(w) − f(0)‖∞ ≤ ‖f(w) − f(0)‖2,

‖G(w) − G(0)‖1 ≤ ‖G(w)‖1 +‖G(0)‖1,

‖f(w) − f(0)‖2 ≥ ‖f(w)‖2 − ‖f(0)‖2.

(18)

Using the above inequalities in (20), we have the fol-
lowing inequality:

‖G(w)‖1 >
λmin Ω1( 􏼁‖f(w)‖2 − λmin Ω1( 􏼁‖f(0)‖2 − 2‖M‖∞‖G(0)‖1

2‖M‖∞
, (19)

where ‖f(0)‖2, ‖G(0)‖1, and ‖M‖∞ are finite. Moreover,
‖G(w)‖⟶∞ as ‖f(w)‖⟶∞ or equivalently
‖G(w)‖⟶∞ as ‖w‖⟶∞. )erefore, from the result of
Lemma 2, for each constant vector J, the neural networksmodel
(2) has a unique equilibrium point. Hence, the proof. □
4. Global Stability Analysis

In this section, we prove that the obtained sufficient con-
ditions for the existence and uniqueness of the equilibrium
point in the previous )eorem 1 will also give the sufficient
conditions for the GARS of the neural system (2). Fur-
thermore, we denote the equilibrium point of 1 by w∗ and
use some proper transformation say yi(·) � wi(·)

− w∗i , i � 1, 2, . . . , n. After giving such transformation, the
network model (1) can be put in the following form:

_yi(t) � − ciyi(t) + 􏽘
n

j�1
dijgj yj(t)􏼐 􏼑 + 􏽘

n

j�1
rijgj yj(t − τ)􏼐 􏼑,

(20)

where gi(yi(·)) � fi(yi(·) + w∗i ) − fi(w∗i ), i � 1, 2, . . . , n

Moreover, Assumption 1 holds for the function g, i.e., f ∈ k

gives that g ∈ k with gi(0) � 0, i � 1, 2, . . . , n. By using this
transformation, the equilibrium point w∗ of 2 is shifted to
the origin of (20).

Now, our focus is to show that GARS for the origin of the
transformed model (20) instead of focusing the GARS for
w∗.

)e matrix form of (20) is as follows:

_y(t) � − Cy(t) + Dg(y(t)) + Rg(y(t − τ)), (21)

where y(t) � (y1(t), y2(t), . . . , yn(t))T ∈ Rn is the new
state vector, g(y(t)) � (g1(y1(t)), g2(y2(t)), . . . , gn

(yn(t)))T ∈ Rn, and g(y(t − τ)) � (g1(y1(t − τ)), g2
(y2(t − τ)), . . . , gn(yn(t − τ)))T ∈ Rn.

Theorem 2. Suppose that g ∈ k and there exist matrices
K � diag(ki > 0),M � diag(mi > 0), and Υ � diag(ci ≥ 0),
such that

Ω1 � 2CMK
− 1

− M D
∗

− Υ( 􏼁 + D
∗

− Υ( 􏼁
T
M + M D∗ + Υ( 􏼁 + D∗ + Υ( 􏼁

T
M

�����

�����2
I􏼒 􏼓

− 2 Mmax‖
􏽢R‖F􏼐 􏼑I> 0,

(22)

whereMmax � maximum(mi),D
∗ � 1/2(D + D),D∗ � 1/2

(D − D), and 􏽢R � (􏽢rij) with 􏽢rij � max(|rij|, |rij|). )en,
origin of the neural network model (21) satisfying the network
parameters 3 is globally asymptotically robust stable.

Proof. Consider the following positive definite Lyapunov
functional:

V(y(t)) � y
T
(t)y(t) + 2δ􏽘

n

i�1
􏽚

yi(t)

0
migi(ξ)dξ +(δμ + η) 􏽘

n

i�1
􏽚

t

t− τi

g
2
i yi(ζ)( 􏼁dζ , (23)
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where mi, δ, η, and μ are the positive constants which will be
determined later. )e following equation is the time

derivative of equation (23) along the trajectories of the
model (21):

_V(y(t)) � − 2δg
T

(y(t))MCy(t) + 2δg
T
(y(t))MDg(y(t))

+ 2δg
T
(y(t))MRg(y(t − τ)) + 2y

T
(t)Rg(y(t − τ))

− 2y
T
(t)Cy(t) + 2y

T
(t)Dg(y(t)) + δμ‖g(y(t))‖

2
2 − δμ‖g(y(t − τ))‖

2
2

+ η‖g(y(t))‖
2
2 − η‖g(y(t − τ))‖

2
2.

(24)

Also,

− y
T
(t)Cy(t) + 2y

T
(t)Dg(y(t)) ≤g

T
(y(t))D

T
C

− 1
Dg(y(t))

≤ ‖D‖
2
2 C

− 1����
����2‖g(y(t))‖

2
2,

(25)

− y
T
(t)Cy(t) + 2y

T
(t)Rg(y(t − τ))≤g

T
(y(t − τ))R

T
C

− 1
Rg(y(t − τ))

≤ ‖R‖
2
2 C

− 1����
����2‖g(y(t − τ))‖

2
2,

(26)

2δg
T
(y(t))MRg(y(t − τ))≤ 2δMmax‖R‖2‖g(y(t))‖2‖g(y(t − τ))‖2

≤ δMmax‖R‖2‖g(y(t))‖
2
2 + δMmax‖R‖2‖g(y(t − τ))‖

2
2

≤ δMmax‖
􏽢R‖Fg(y(t))

2
2 + δMmax‖

􏽢R‖Fg(y(t − τ))
����

����
2
2,

(27)

− 2δg
T
(y(t))MCy(t) ≤ − 2δg

T
(y(t))MCK

− 1
g(y(t)). (28)

By applying equations (25)–(28) in (24), we have

_V(y(t)) ≤ ‖D‖
2
2 C

− 1����
����2‖g(y(t))‖

2
2 +‖R‖

2
2 C

− 1����
����2‖g(y(t − τ))‖

2
2 − 2δg

T
(y(t))MCK

− 1
g(y(t))

+ δg
T
(y(t)) MD + D

T
M􏼐 􏼑g(y(t)) + δMmax‖

􏽢R‖F‖g(y(t))‖
2
2 + δMmax‖

􏽢R‖F‖g(y(t − τ))‖
2
2

+ δμ‖g(y(t))‖
2
2 − δμ‖g(y(t − τ))‖

2
2 + η‖g(y(t))‖

2
2 − η‖g(y(t − τ))‖

2
2.

(29)

Since ‖D‖2 ≤ ‖ 􏽢D‖F, ‖R‖2 ≤ ‖ 􏽢R‖F, and ‖C− 1‖2 ≤ ‖C− 1‖2. )erefore,

_V(y(t)) ≤ ‖ 􏽢D‖
2
F C

− 1�������

�������2
‖g(y(t))‖

2
2 +‖ 􏽢R‖

2
F C

− 1�������

�������2
‖g(y(t − τ))‖

2
2 − 2δg

T
(y(t))MCK

− 1
g(y(t))

+ δg
T
(y(t)) MD + D

T
M􏼐 􏼑g(y(t)) + δMmax‖

􏽢R‖F‖g(y(t))‖
2
2 + δMmax‖

􏽢R‖F‖g(y(t − τ))‖
2
2

+ δμ‖g(y(t))‖
2
2 − δμ‖g(y(t − τ))‖

2
2 + η‖g(y(t))‖

2
2 − η‖g(y(t − τ))‖

2
2.

(30)

6 Mathematical Problems in Engineering



By taking η � ‖ 􏽢R‖
2
F‖C− 1‖2 and μ � Mmax‖

􏽢R‖F, _V(y(t))

can be written in the following form:

_V(y(t))≤ ‖ 􏽢D‖
2
F +‖ 􏽢R‖

2
F􏼒 􏼓 C

− 1�������

�������2
‖g(y(t))‖

2
2 − 2δg

T
(y(t))MCK

− 1
g(y(t))

+ δg
T

(y(t)) MD + D
T
M􏼐 􏼑g(y(t)) + 2δMmax‖

􏽢R‖F‖g(y(t))‖
2
2.

(31)

Using the result of Lemma 2, we write

g
T
(y(t)) MD + D

T
M􏼐 􏼑g(y(t)) ≤g

T
(y(t))

M D
∗

− Υ( 􏼁 + D
∗

− Υ( 􏼁
T
M + M D∗ + Υ( 􏼁 + D∗ + Υ( 􏼁

T
M

�����

�����2
I􏼒 􏼓g(y(t)).

(32)

)en, _V(y(t)) becomes

_V(y(t))≤ ‖ 􏽢D‖
2
F +‖ 􏽢R‖

2
F􏼒 􏼓 C

− 1�������

�������2
‖g(y(t))‖

2
2 − 2δg

T
(y(t))MCK

− 1
g(y(t))

+ δg
T
(y(t)) M D

∗
− Υ( 􏼁 + D

∗
− Υ( 􏼁

T
M + M D∗ + Υ( 􏼁 + D∗ + Υ( 􏼁

T
M

�����

�����2
I􏼒 􏼓g(y(t))

+ 2δMmax‖
􏽢R‖F‖g(y(t))‖

2
2 � ‖ 􏽢D‖

2
F +‖ 􏽢R‖

2
F􏼒 􏼓 C

− 1�������

�������2
‖g(y(t))‖

2
2 − δg

T
(y(t))Ω1g(y(t)).

(33)

Since Ω1 > 0, it follows from (33) that

_V(y(t))≤ ‖ 􏽢D‖
2
F +‖ 􏽢R‖

2
F􏼒 􏼓 C

− 1�������

�������2
‖g(y(t))‖

2
2 − δλmin Ω1( 􏼁‖g(y(t))‖

2
2. (34)

If we take δ > (‖ 􏽢D‖
2
F + ‖ 􏽢R‖

2
F)‖C− 1‖2/λmin(Ω1), then it

follows that _V(y(t))< 0, ∀g(y(t)) ≠ 0 since g(y(t))≠ 0
gives that y(t)≠ 0. Also if g(y(t)) � 0 and y(t)≠ 0, then
_V(y(t)) can be written in the following form:

_V(y(t)) � − ηg
T
(y(t − τ))g(y(t − τ)) − δμg

T
(y(t − τ))g(y(t − τ))

− 2y
T
(t)Cy(t) + 2y

T
(t)Rg(t − τ)

≤ − 2y
T
(t)Cy(t) + 2y

T
(t)Rg(t − τ) − ηg

T
(y(t − τ))g(y(t − τ)).

(35)

Since − yT(t)Cy(t) + 2yT(t)Rg(t − τ) − ηgT(y(t − τ))

g (y(t − τ))≤ 0, then we have _V(y(t)) � − yT(t)Cy(t).
)erefore _V(y(t)) < 0, ∀y(t)≠ 0. Finally, let us assume that
g(y(t)) � 0 and y(t) � 0. )en, _V(y(t)) � − ηgT

(y(t − τ))g(y(t − τ)) − δμgT (y(t − τ))g(y(t − τ)).
It is obvious that _V(y(t))< 0, ∀g(y(t − τ))≠ 0. Hence,

_V(y(t)) � 0 if and only if y(t) � g(y(t)) � g(y(t − τ)) � 0;
otherwise, _V(y(t)) < 0. Moreover, V(y(t)) is radially un-
bounded provided V(y(t))⟶∞ as ‖y‖⟶∞. Hence,

origin of system (21), or the equilibrium point of the neural
system (2), is GARS. □

5. Comparisons with Numerical Examples

In this section, we will compare our sufficient conditions of
GARS with the previous existing results of GARS. For the
comparison, the previous results of GARS are restated as
follows.
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Theorem 3 (see [24]). Suppose that g ∈ k and there exist
matrices K � diag(ki > 0) and M � diag(mi > 0) such that

Ω2 � 2CMK
− 1

− MD
∗

+ D
∗

( 􏼁
T
M + MD∗ + D∗( 􏼁

T
M

�����

�����2
I􏼒 􏼓 − 2 ‖M‖2‖

􏽢R‖F􏼐 􏼑I> 0. (36)

)en, origin of system (21) satisfying the network pa-
rameters 3 is globally asymptotically robust stable.

Theorem 4 (see [15]). Suppose that g ∈ k and there exist
matrices K � diag(ki > 0) and M � diag(mi > 0) such that

Ω3 � 2CMK
− 1

+ Z − 2 ‖M‖2‖
􏽢R‖F􏼐 􏼑I> 0. (37)

)en origin of system (21) satisfying the network param-
eters 3 is globally asymptotically robust stable., where Z �

(zij)n×n with zii � − 2midii and zij � − maximum(|midij+

mjdji|, |midij + mjdji|), for i≠ j.Now we demonstrate the
advantages of our result with some examples as follows.

Example 1. Consider the following network parameters of
the neural network model 2:

D �

1 − 1 − 1 − 1
0 1 0 − 1

− 2 − 1 1 − 1
− 2 − 2 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D �

1 1 1 1
2 1 2 1
0 1 1 1
0 0 2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R �

− 1 0 − 1 0
0 − 1 − 1 1

− 1 0 − 1 1
1 − 1 1 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R �

1 1 0 1
0 1 − 1 1
1 0 1 1
1 1 1 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(38)

Let k1 � k2 � k3 � k4 � 1 and c1 � c2 � c3 � c4 � c.
From the above matrices, we get

D
∗

�

1 0 0 0

1 1 1 0

− 1 0 1 0

− 1 − 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D∗ � a

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽢R �

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Υ �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(39)

Using the above parameters, ‖ 􏽢R‖F � 4.
In this example, we compare our sufficient condition Ω1

with the result Ω3 by taking M as an identity matrix. Now,
Ω1 andΩ3 are calculated as follows:

Ω1 � 2CMK
− 1

− M D
∗

− Υ( 􏼁 + D
∗

− Υ( 􏼁
T
M + M D∗ + Υ( 􏼁 + D∗ + Υ( 􏼁

T
M

�����

�����2
I􏼒 􏼓

− 2 Mmax‖
􏽢R‖F􏼐 􏼑I �

2c − 16 − 1 1 1

− 1 2c − 16 − 1 1

1 − 1 2c − 16 − 1

1 1 − 1 2c − 16

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(40)

Ω1 > 0, provided c> 9.12. For the sufficient condition
Ω1 > 0, system 2 will become GARS whenever c> 9.12. For

calculatingΩ3, we need thematrixZ, and it is calculated using
the matrices M, D, and D. )e matrix Z is given as follows:

8 Mathematical Problems in Engineering



0.1 0.2 0.3 0.4 0.50
Time

–0.5

0

0.5

1

St
at

e r
es

po
ns

e

y1 (t)
y2 (t)

y3 (t)
y4 (t)

Figure 1: System solution for the initial state y(0) � [− 0.5, 1, 0.3, − 0.2].
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Figure 2: System solution for the different initial states.
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Figure 3: System solution for the initial state y(0) � [− 0.5, 1, 0.3, − 0.2].
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Z �

− 2 − 3 − 3 − 3
− 3 − 2 − 3 − 3
− 3 − 3 − 2 − 3
− 3 − 3 − 3 − 2.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ω3 � 2CMK
− 1

− +Z − 2 ‖M‖2‖
􏽢R‖F􏼐 􏼑I

� 2

2c − 10 − 3 − 3 − 3
− 3 2c − 10 − 3 − 3
− 3 − 3 2c − 10 − 3
− 3 − 3 − 3 2c − 10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(41)

Ω3 > 0, provided c> 9.5. For the sufficient condition
Ω3 > 0, system 2 will become GARS whenever c> 9.5.
Consider the fixed network parameters C � 20I,D �

D, andR � R, τ is a constant, and the activation function
g(y(t)) � tanh(y(t)). )e state trajectories are depicted in
Figures 1 and 2 under the initial state y(0) � [− 0.5,

1, 0.3, − 0.2] and for the different initial states, respectively.
)e activation function g(y(t)) � (e− y2(t)− 1/e− y2(t) + 1),
and the state trajectories are depicted in Figures 3 and 4
under the initial state y(0) � [− 0.5, 1, 0.3, − 0.2] and for the
different initial states, respectively.

Remark 1. From the above Example 1,Ω3 is valid for c> 9.5.
Moreover, our result Ω1 is valid in the range 9.12< c< 9.5,
but Ω3 does not hold. )erefore, we conclude that Ω1 is less
conservative than Ω3 for the network parameters of this
example.

Example 2. Consider the neural network model 1 with the
following network parameters:

D �

− 2 − 1 − 1 − 1

− 1 0 − 1 − 1

− 1 − 1 0 − 1

− 1 − 1 − 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D �

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R �

− 2 0 − 1 − 2

0 − 1 − 1 − 2

− 2 − 2 − 1 1

1 − 2 1 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R �

1 2 2 1

2 2 2 1

1 0 2 2

2 1 2 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(42)

Let k1 � k2 � k3 � k4 � 1 and c1 � c2 � c3 � c4 � c.
From the above matrices, we get

D
∗

�

− 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D∗ � a

1 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽢R �

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Υ �

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(43)

Using the above parameters, ‖ 􏽢R‖F � 8. In this example,
we compare our sufficient conditionΩ1 with the resultΩ2 by
taking M as an identity matrix. Now, Ω1 andΩ2 are cal-
culated as follows:
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Figure 4: System solution for the different initial states.
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Ω1 � 2CMK
− 1

− M D
∗

− Υ( 􏼁 + D
∗

− Υ( 􏼁
T
M + M D∗ + Υ( 􏼁 + D∗ + Υ( 􏼁

T
M

�����

�����2
I􏼒 􏼓

− 2 Mmax‖
􏽢R‖F􏼐 􏼑I �

2c − 22 0 0 0

0 2c − 22 0 0

0 0 2c − 22 0

0 0 0 2c − 22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(44)
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Figure 5: System solution for the initial state y(0) � [− 0.4, 0.3, 0.5, 0.1].
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Ω1 > 0, provided c> 11. For the sufficient condition
Ω1 > 0, system 2 will become GARS whenever c> 11. Now,
Ω2 is calculated as follows:

Ω2 � 2CMK
− 1

− MD
∗

+ D
∗

( 􏼁
T
M + MD∗ + D∗( 􏼁

T
M

�����

�����2
I􏼒 􏼓 − 2 ‖M‖2‖

􏽢R‖F􏼐 􏼑I

�

2c − 20.6 0 0 0

0 2c − 22.6 0 0

0 0 2c − 22.6 0

0 0 0 2c − 22.6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(45)

Ω2 > 0, provided c> 11.3. For the sufficient condition
Ω2 > 0, system 2 will become GARS whenever c> 11.3.
Consider the fixed network parameters C � 10I,D �

D, andR � R, τ is a constant, and the activation function

g(y(t)) � tanh(y(t)). )e state trajectories are depicted in
Figures 5 and 6 under the initial state y(0) � [− 0.4,

0.3, 0.5, 0.1] and for the different initial states, respectively.
)e activation function g(y(t)) � e− y2(t)− 1/e− y2(t) + 1, and
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Figure 7: System solution for the initial state y(0) � [− 0.4, 0.3, 0.5, 0.1].
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Figure 8: System solution for the different initial states.
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the state trajectories are depicted in Figures 7 and 8 under
the initial state y(0) � [− 0.4, 0.3, 0.5, 0.1] and for the dif-
ferent initial states, respectively.

Remark 2. From Example 2, Ω2 is valid for c> 11.3.
Moreover, our result Ω1 is valid in the range 11< c< 11.3,
but Ω2 does not hold. )erefore, we conclude that Ω1 is less
conservative than Ω2 for the network parameters of this
example.

From the above examples, our sufficient conditionsΩ1 is
less conservative than those imposed by the results Ω2 and
Ω3 . Hence, our sufficient condition is more advantageous
than the previous results for the above network parameters.
Our sufficient condition may have less advantage than the
existing stability conditions for the different sets of network
parameters. However, all such results will give sufficient
conditions.

6. Conclusion

In this paper, global stability of NNs has been studied by
using the Frobenius norm result under parameter uncer-
tainties. Since the Frobenius norm is the easiest norm by its
calculation when compared with spectral norm. By using
this Frobenius norm, we have obtained a new sufficient
condition for the GARS of NNs model 2. Finally, we dis-
cussed some numerical examples to illustrate the effec-
tiveness of our result with the previous results.
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