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1. Introduction

In recent years several generalization and extensions of the classical thought of convex
function have been presented, and the hypothesis of inequalities has produced significant
commitments in that regard. The inequalities of Hermite-Hadamard and Fejer have been
the object of extraordinary examination and have given numerous applications. The
history of this inequalities can be found in [1–6]. Hermite- Hadamard derived the following
inequalities: If a function q : J ⊆ R→ R is a convex function, c, d ∈ J with c < d, then

q

(
c+ d

2

)
≤ 1

d− c

∫ d

c

q(u)du ≤ q(c) + q(d)

2
. (1.1)

In 1906, L. Fejer [7] proved the following integral inequalities which are known in the
literature as Fejer inequality:

q

(
c+ d

2

)∫ d

c

w(u)du ≤ 1

d− c

∫ d

c

q(u)w(u)du ≤ q(c) + q(d)

2

∫ d

c

w(u)du, (1.2)

where w : J ⊆ R→ R+ is integrable and symmetric for c+d
2 . If we consider in inequality

(1.2) that w ≡ 1, then we reclaim the known Hermite-Hadamard inequality. In [8],
Dragomir and Agarwal proved the following results related to the first part of inequality
(1.1).

Let q : J ⊆ R→ R be a differentiable function and |q′| is convex on [c, d] ∈ J, then the
following inequality holds:∣∣∣∣∣q(c) + q(d)

2
− 1

d− c

∫ d

c

q(u)du

∣∣∣∣∣ ≤ d− c
8

(|q′(c)|+ |q′(d)|) . (1.3)

A several studies have been written on the generalized, extensions, providing new
proofs and application of inequalities (1.1)-(1.3), see [9–19] and the references therein.

A convex function q(u) which has great application in various field and closely related
to inequalities. Since q(u) is convex, it is absolutely continuous [20, 21]. If a function
q(u) is convex (q′′(u) > 0), which implies that q′(u) < 0 and q(u) > 0. That is, convex
functions possessing Fourier transform are also decreasing and positive [22, 23]. The
most applied integral transform is a Fourier transform. The idea of Fourier transform
was first suggested by the French mathematician Jean Baptiste Joseph Fourier in 1807.
It transforms a function in the time domain into the frequency domain. The most number
of researchers had researched on the transform of it in various streams. Fourier transform
stands unique among the other transform because it is easier to comprehend and also the
involvement of numerous works in it.

In [24], the author Chen to study the extensions of the Hermite-Hadamard inequality
for harmonically convex functions via fractional integrals. In [25], Ahmad et al. gener-
alized the Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir–Agarwal and Pach-
patte type inequalities via fractional integrals. However, to the best of our knowledge,
the Hermite-Hadamard and some new kind of inequalities for convex functions has not
been fully reported based on Fourier integral transform approach.

In this paper, based on above observation, we develop a new inequalities of convex
functions that are related to generalizing of the classical Hermite-Hadamard via Fourier
integral transform. Furthermore, using the convolution concept and properties of Fourier
transform, some new generalizing of Hermite-Hadamard-Fejer and Dragomir-Agarwal in-
equalities of convex function are established.
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The contribution of the paper is outlined as follows: In Section 2, some definitions are
introduced, which are closely connected to our main results. In Section 3, we established
integral inequalities analogous to generalizing of Hermite-Hadamard, Hermite-Hadamard-
Fejer and Dragomir-Agarwal inequalities of convex function. The conclusion are given in
Section 4.

2. Preliminaries

Here, we give some definition and properties to further work. Throughout this section,
we let J = [c, d] be an interval in R.

Definition 2.1. A function q : J ⊆ R→ R is said to be convex if

q (ηu+ (1− η)v) ≤ ηq(u) + (1− η)q(v), (2.1)

holds for all u, v ∈ J and η ∈ [0, 1].

The above inequality (2.1) holds in opposite direction for concave function. Now we
recall some basic concept of Fourier transform of a function.

Definition 2.2. If a function q : R → F is piecewise continuous in each finite interval
and is absolutely integrable in R, then the Fourier transform of q ∈ L′(R) denoted by

Q̂(ξ) is given by the integral

Q̂(ξ) =

∫ ∞
−∞

q(u)eiξudu (or) Q̂(ξ) =

∫ ∞
−∞

q(u)e−iξudu. (2.2)

The inverse Fourier transform is given by

q(u) =
1

2π

∫ ∞
−∞

Q̂(ξ)e−iξudξ (or) q(u) =
1

2π

∫ ∞
−∞

Q̂(ξ)eiξudξ. (2.3)

The function Q̂(ξ) consists of the frequency components of the time domain function
q(u), ∀u ∈ R.

Definition 2.3. (Convolution) The convolution of two function q(u) and r(u) is defined
as

q(u) ∗ r(u) =

∫ ∞
−∞

q(u)r(t− u)du, ∀u ∈ R.

Property of Fourier transform is given as,

(1) The Fourier transform of the convolution of q(u) and r(u) is the product of
the Fourier transform of q(u) and r(u). That is,

F (q(u) ∗ r(u)) = F (q(u))F (r(u)) = Q̂(ξ)R̂(ξ).

(2) If Q̂(ξ) is Fourier transform of q(u), then

F (q(u± a)) = e±iaQ̂(ξ).



1054 Thai J. Math. Vol. (2020) /A. Mohanapriya

3. Main Results

In this section, we derive our main results related to Fourier integral transform of
convex function.

Theorem 3.1. (Generalization of Hermite-Hadamard inequality) Let q : J ⊆ R → R be
a convex function with c < d and c, d ∈ J. Then, the following inequalities for Fourier
integral transform Equations (2.2) and (2.3) hold:

q

(
c+ d

2

)
≤ iξ

2(1− e−iξ(d−c))

(
Q̂(ξ + c) + Q̂(ξ − d)

)
≤ q(c) + q(d)

2
, (3.1)

where Q̂(ξ) is Fourier transform of function q(u), ∀u ∈ [c, d].

Proof. Since q is a convex function on [c, d] ⊆ R, for all x ∈ [0, 1] and u, v ∈ [c, d]. We
have,

q

(
u+ v

2

)
≤ q(u) + q(v)

2
. (3.2)

By making use of the substitution u = xc+ (1− x)d and v = (1− x)c+ xd, we have

2q

(
c+ d

2

)
≤ q(xc+ (1− x)d) + q((1− x)c+ xd). (3.3)

Set ρ = ξ(d−c), multiplying both sides of (3.3) by e−iρx and then integrating with respect
to x over [0, 1]. We have,

2

∫ 1

0

q

(
c+ d

2

)
e−iρxdx ≤e−iρx

(∫ 1

0

q(xc+ (1− x)d)dx

+

∫ 1

0

q((1− x)c+ xd)dx

)
2

∫ 1

0

q

(
c+ d

2

)
e−iρxdx ≤

∫ 1

0

q(xc+ (1− x)d)e−iρxdx

+

∫ 1

0

q((1− x)c+ xd)e−iρxdx

2q

(
c+ d

2

)(
1− e−iξ(d−c)

iξ(d− c)

)
≤ 1

d− c

(∫ d

c

q(s)e−iξ(d−s)ds

+

∫ d

c

q(s)e−iξ(s−c)ds

)
=

1

d− c

(
e−iξdQ̂(ξ) + eiξcQ̂(ξ)

)
=

1

d− c

(
Q̂(ξ − d) + Q̂(ξ + c)

)
q

(
c+ d

2

)
≤ iξ

2
(
1− e−iξ(d−c)

) (Q̂(ξ + c) + Q̂(ξ − d)
)
. (3.4)

Thus the first inequality of (3.1) is established. The proof of second inequality is given
as, since q(u) is convex function, then it gives

q (xc+ (1− x)d) ≤ xq(c) + (1− x)q(d), (3.5)
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and

q((1− x)c+ xd) ≤ (1− x)q(c) + xq(d), ∀x ∈ [0, 1]. (3.6)

Adding inequalities (3.5) and (3.6), we get

q (xc+ (1− x)d) + q((1− x)c+ xd) ≤ q(c) + q(d). (3.7)

Multiplying both sides of (3.7) by e−iρx and integrating the resulting inequality with
respect to x over [0, 1],

e−iρx
(∫ 1

0

q(xc+ (1− x)d)dx+

∫ 1

0

q((1− x)c+ xd)dx

)
≤ e−iρx

∫ 1

0

(q(c) + q(d))dx

∫ 1

0

q(xc+ (1− x)d)e−iρxdx+

∫ 1

0

q((1− x)c+ xd)e−iρxdx

≤
∫ 1

0

(q(c) + q(d))e−iρxdx

1

d− c

∫ d

c

q(s)e−iξ(s−c)ds+
1

d− c

∫ d

c

q(s)e−iξ(d−s)ds

≤ 2

(
1− e−iξ(d−c)

iξ(d− c)

)
(q(c) + q(d))

1

d− c

(
Q̂(ξ + c) + Q̂(ξ − d)

)
≤ 2

(
1− e−iξ(d−c)

iξ(d− c)

)
(q(c) + q(d)

iξ

2
(
1− e−iξ(d−c)

) (Q̂(ξ + c) + Q̂(ξ − d)
)
≤ q(c) + q(d). (3.8)

This completes the proof.

Corollary 3.2. Assume that q : [c, d] ⊆ R → R is a concave function on J with c < d
and q ∈ L′(c, d), then we have

q

(
c+ d

2

)
≥ iξ

2(1− e−iξ(d−c))

(
Q̂(ξ + c) + Q̂(ξ − d)

)
≥ q(c) + q(d)

2
. (3.9)

Now we give proof of Hermite-Hadamard Fejer inequality utilizing Fourier transform
of convex function.

Theorem 3.3. (Generalization of Hermite-Hadamard-Fejer Inequality) Let q : [c, d] ⊆
R→ R+ be a convex function with c < d. If w : [c, d] ⊆ R→ R is non-negative, integrable
and w(c+ d− u) = w(u), then the following inequality hold:

q

(
c+ d

2

)(
Ŵ (ξ − d) + Ŵ (ξ + c)

)
≤Q̂(ξ + c)Ŵ (ξ + c) + Q̂(ξ − d)Ŵ (ξ − d)

≤q(c) + q(d)

2

(
Ŵ (ξ − d) + Ŵ (ξ + c)

)
,

(3.10)
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where Ŵ (ξ) is Fourier transform of function q(u), ∀u ∈ [c, d].

Proof. Using the convexity of q(u) on [c, d], we get from the inequality (3.3) that

2q

(
c+ d

2

)
≤ q(xc+ (1− x)d) + q((1− x)c+ xd), ∀x ∈ [0, 1]. (3.11)

Multiply both-sides of above equation (3.11) by w((1− x)c+ xd), we get

2q

(
c+ d

2

)
∗ w((1− x)c+ xd) ≤ q(xc+ (1− x)d) ∗ w((1− x)c+ xd)

+ q((1− x)c+ xd) ∗ w((1− x)c+ xd). (3.12)

Multiplying both sides of inequality (3.7) by e−iρx and integrate resulting inequality with
respect to x over [0, 1], we obtain

2q

(
c+ d

2

)∫ 1

0

w((1− x)c+ xd)e−iρxdx ≤
∫ 1

0

q(xc+ (1− x)d) ∗ w((1− x)c+ xd)

e−iρxdx+

∫ 1

0

q((1− x)c+ xd)

∗ w((1− x)c+ xd)e−iρxdx

2
1

d− c
q

(
c+ d

2

)
Ŵ (ξ − d) ≤ 1

d− c

∫ d

c

q(c+ d− s) ∗ w(s)e−iξ(s−c)ds

+
1

d− c

∫ d

c

q(s) ∗ w(s)e−iξ(s−c)ds

=
1

d− c

∫ d

c

e−iξ(d−s)q(s) ∗ w(c+ d− s)ds

+
1

d− c
eiξcF (q(s) ∗ w(s))

=
1

d− c
e−iξdF (q(s) ∗ w(s))

+
1

d− c
eiξcF (q(s) ∗ w(s))

=
1

d− c
e−iξdQ̂(ξ)Ŵ (ξ)

+
1

d− c
eiξcQ̂(ξ)Ŵ (ξ),

we get,

2q

(
c+ d

2

)
Ŵ (ξ − d) ≤ Q̂(ξ − d)Ŵ (ξ − d) + Q̂(ξ + c)Ŵ (ξ + d). (3.13)

Multiplying both-sides of inequality (3.3) by e−iρxw(xc+ (1− x)d) and then integrating
above inequality with respect to x over [0, 1]. In consequence, we obtain

2q

(
c+ d

2

)
Ŵ (ξ + c) ≤ Q̂(ξ − d)Ŵ (ξ − d) + Q̂(ξ + c)Ŵ (ξ + c). (3.14)
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In view of inequalities (3.13) and (3.14), we get

2q

(
c+ d

2

)(
Ŵ (ξ + c) + Ŵ (ξ − d)

)
≤ Q̂(ξ − d)Ŵ (ξ − d) + Q̂(ξ + c)Ŵ (ξ + d).

(3.15)

To prove the second inequality, we make use of inequality (3.7)

q(xc+ (1− x)d) + q((1− x)c+ xd) ≤ q(c) + q(d), ∀x ∈ [0, 1]. (3.16)

Multiplying both-sides of inequality (3.16) by e−iρxw((1−x)c+xd) and then integrating
resulting inequality with respect to x over [0, 1]:

∫ 1

0

e−iρxq(xc+ (1− x)d) ∗ w((1− x)c+ xd)dx+

∫ 1

0

e−iρtq((1− x)c+ xd)

∗w((1− x)c+ xd)dx ≤ (q(c) + q(d))

∫ 1

0

e−iρxw((1− x)c+ xd)dx

Q̂(ξ + c)Ŵ (ξ + c) + Q̂(ξ − d)Ŵ (ξ − d) ≤ q(c) + q(d)

2

(
Ŵ (ξ − d) + Ŵ (ξ + c)

)
.

Thus the proof of theorem is complete.

The following Lemma will be used to established the generalization of Dragomir-
Agarwal inequality.

Lemma 3.4. Let q : J ⊆ R → R be a differentiable convex function on [c, d] such that
c < d. If q′ is Lebesgue integral for c, d ∈ J, then the following equality for Fourier integral
transform holds:

q(c) + q(d)

2
− iξ

2(1− e−iρ)
(Q̂(ξ + c) + Q̂(ξ − d)) =

(
d− c

2(1− e−iρ)

)
∫ 1

0

e−iρxq′(xc+ (1− x)d)dx−
∫ 1

0

e−iρ(1−x)q′(xc+ (1− x)d)dx,

where ρ = ξ(d− c).
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Proof. It suffices to note that,

I =

∫ 1

0

(
e−iρx − e−iρ(1−x)

)
q′(xc+ (1− x)d)dx

=

∫ 1

0

e−iρxq′(cx+ (1− x)d)dx−
∫ 1

0

e−iρ(1−x)q′(xc+ (1− x)d)dx.

=

(
e−iρxq(xc+ (1− x)d

c− d

)1

0

−
∫ 1

0

q(xc+ (1− x)d)

c− d
e−iρx(−iρ)dx

−
(
e−iρ(1−x)q(xc+ (1− x)d

c− d

)1

0

+

∫ 1

0

q(xc+ (1− x)d)

c− d
e−iρ(1−x)(iρ)dx

=
e−iρq(c)

c− d
− q(d)

c− d
+

iρ

c− d

∫ 1

0

e−iρxq(xc+ (1− x)d)dx− q(c)

c− d

+
e−iρq(d)

c− d
+

iρ

c− d

∫ 1

0

e−iρ(1−x)q(xc+ (1− x)d)dx

=
−e−iρq(c)
d− c

+
q(d)

d− c
− iρ

(d− c)2

∫ 1

0

e−iξ(d−s))q(s)ds+
q(c)

d− c
− e−iρq(d)

d− c

− iρ

(d− c)2

∫ 1

0

e−iξ(s−c)q(s)ds

=
q(c) + q(d)

d− c

(
1− e−iρ

)
− iξ

d− c

(
Q̂(ξ − d) + Q̂(ξ + c)

)
.

d− c

2 (1− e−iρ)
I =

q(c) + q(d)

2
− iξ

2 (1− e−iρ)

(
Q̂(ξ − d) + Ŵ (ξ + c)

)
.

Theorem 3.5. (Dragomir-Agarwal Inequality) Suppose that q : J ⊆ R → R is a differ-
entiable convex mapping on J. If |q′| is convex on [c, d] and c, d ∈ J, then the following
inequality involving Fourier integral holds:

∣∣∣∣q(c) + q(d)

2
− iξ

2(1− e−iρ)

(
Q̂(ξ + c) + Q̂(ξ − d)

)∣∣∣∣ ≤ (1− 2e−iρ + e−iρ)

iξ(1− e−iρ)

∣∣∣∣q′(c) + q′(d)

∣∣∣∣,
where ρ = ξ(d− c).

Proof. By Lemma (3.4), we have

q(c) + q(d)

2
− iξ

2(1− e−iρ)
(Q̂(ξ + c) + Q̂(ξ − d))

=
d− c

2(1− e−iρ)

∫ 1

0

e−iρxq′(xc+ (1− x)d)dx−
∫ 1

0

e−iρ(1−x)q′(xc+ (1− x)d)dx.
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Since the function |q′| is convex on [c, d], we have∣∣∣∣q(c) + q(d)

2
− iξ

2(1− eiρ)
(Q̂(ξ + c) + Q̂(ξ − d))

∣∣∣∣
≤d− c

2

∫ 1

0

∣∣∣e−iρx − e−iρ(1−x)
∣∣∣

1− e−iρ
∣∣q′(xc+ (1− x)d)

∣∣ dx
≤d− c

2

∫ 1

0

∣∣∣e−iρx − e−iρ(1−x)
∣∣∣

1− e−iρ
x
∣∣q′(c)∣∣ dx

+
d− c

2

∫ 1

0

∣∣∣e−iρx − e−iρ(1−x)
∣∣∣

1− e−iρ
(1− x)

∣∣q′(d)∣∣ dx
=
d− c

2

∫ 1/2

0

(
e−iρx − e−iρ(1−x)

)
1− e−iρ

xq′(c)dx

+
d− c

2

∫ 1

1/2

(
e−iρ(1−x) − e−iρx

)
1− e−iρ

xq′(d)dx

+
d− c

2

∫ 1/2

0

(
e−iρx − e−iρ(1−x)

)
1− e−iρ

(1− x)q′(c)dx

+
d− c

2

∫ 1

1/2

(
e−iρ(1−x) − e−iρx

)
1− e−iρ

(1− x)q′(d)dx

=
d− c

2(1− e−iρ)

∣∣q′(c)∣∣ (−e−
iρ
2

iρ
+

1

(iρ)2
(1− e−iρ)

+
1

iρ

(
1− e−

iρ
2 + e−iρ

)
− 1

(iρ)2
(1− e−iρ)

)
+

d− c

2(1− e−iρ)

∣∣q′(d)∣∣ (− e−
iρ
2

iρ
+

1

iρ
(1 + e−iρ)

− 1

(iρ)2
(1− e−iρ)− e

−iρ
2 iρ+

1

(iρ)2
(1− e−iρ)

)
=
(1− 2e−iρ + e−iρ)

iξ(1− e−iρ)

∣∣q′(c) + q′(d)
∣∣ .

Thus the proof of theorem is complete.

Remark 3.6. For ξ → 0, notice that

lim
ξ→0

iξ

2(1− e−iρ)
=

1

2(d− a)
lim
ξ→0

d− c
2(1− e−iρ)

(
1− 2e−iρ + e−iρ

iρ

)
=
d− c

8
. (3.17)

So, we can reduce to Hermite-Hadamard inequality from Theorem 3.5 with limit ξ → 0.

Corollary 3.7. Let q : J ⊆ R → R be a differentiable mapping on J. If |q′| is concave
on [c, d] and c, d ∈ J, then the following inequality involving Fourier integral holds:∣∣∣∣q(c) + q(d)

2
− iξ

2(1− e−iρ)

(
Q̂(ξ + c) + Q̂(ξ − d)

)∣∣∣∣ ≥ (1− 2e−iρ + e−iρ)

iξ(1− e−iρ)

∣∣q′(c) + q′(d)
∣∣ .
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4. Conclusion

The analyses of the results that the researcher had arrived at has re-affirmed the new
generalization of Hermite-Hadamard and other type of integral inequalities for Fourier
transform of convex functions. Moreover, the researcher believe that the existing the
findings on the theory act as a source for the motivation. This had facilitated the in-
vestigator to identify and explore the similar literature that exists in relation with the
research domain.
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