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ABSTRACT In this paper synchronization of fractional order fuzzy BAM neural networks with time
varying delays and reaction diffusion terms is studied. The time varying delays consist of discrete delays
and distributed delays are considered. Then, some sufficient conditions black are presented to guarantee the
global asymptotic stability of the error system by using Lyapunov-Krasovskii functional having the double
integral terms, we utilized Jensens inequality techniques and LMI approach. Accordingly, we accomplished
synchronization of master-slave fuzzy BAMNNs. The delay dependent stability conditions are set up in
terms of linear matrix inequalities(LMIs), which can be productively understood utilizing Matlab LMI
control tool box. At last, illustrative numerical results have been provided to verify the correctness and
effectiveness of the obtained results.

INDEX TERMS Synchronization,Time varying delays, Reaction Diffusion.

I. INTRODUCTION

ARound 300 years back, the foundation of fractional
order calculus, which is an extension of classical integer

order calculus, was first off mentioned through German
mathematician Leibniz and it failed to attract more attention
for a long time since it lack of application background and
the complexity. Until now, the research on fractional order
calculus becomes a hot research topic because of The reality
that many real-international gadgets want to be defined with
the aid of using fractional order models. Fractional Order cal-
culus is an area of mathematics that deals with extensions of
derivatives and integrals to non integer orders and represents
a powerful tool [1]–[3]. As usual, there are two advantages
in models of fractional order: One is permitting greater
degree of freedom in the models, and the other is describing
memory properties in the models. Therefore, during recent
times, more focus has been paid to the Riemann- Liouville
fractional derivatives and of the Caputo fractional derivatives
[4]. However, during the last two decades, the study of

fractional differential equations has been widely applicable
to many real world problems. Recently, numerous reports
have pointed out that fractional calculus has the ability to
describe numerous phenomena more accurately in various
fields, for instance, biological models, finance, quantum
mechanics, material science, fluid mechanics, cardiac tissues,
medicine, and viscoelastic systems [5]. On account of this,
fractional order calculus turned into added into synthetic
neural community in beyond few decades, namely, fractional
order neural networks (FNNs), that could describe the neuro
dynamics of human brain more effectively and accurately in
view of the hereditary and memory possessed by fractional
calculus. For example, several problems of fractional-order
NNs have been well studied such as global stability, pinning
synchronization, Asymptotic stability, global Mittag-Leffler
stability. Accordingly, [6] necessary and sufficient conditions
of observer-based stabilization for a class of fractional-order
descriptor systems studied, based on these developments
design conditions are obtained in terms of LMIs.
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Time delays are inherent phenomena in interconnected real
systems or processes, including feedback control systems,
due to transportation of material, energy, or information.
Time delay is frequently a source of instability. However,
only under some special circumstances or in certain cases, the
practical problems may be regarded as linear systems. Also,
stability analysis for fractional order linear singular delay
differential systems has been analyzed in [7]. Therefore,
stability of nonlinear dynamic systems not only is of great
significance but also has important value in application. How-
ever, the stability of fractional nonlinear systems, of central
importance in control theory, remains an open problem. To
improve the control performance nonlinear systems, the nu-
merous nonlinear control techniques are applied to controller
design, such as fuzzy control, neural control, sliding mode
control, and adaptive back stepping control. A large number
of results concerning unknown control for nonlinear systems
have been obtained [8]–[10].

Traditional neural networks with fuzzy logic are called
fuzzy neural networks, they can be used for broadening the
range of application of traditional neural networks. Studies
have indicated that fuzzy neural systems are valuable models
for investigating human psychological exercises. There are
numerous significant reports about the fuzzy neural systems
(see, for example, [11]). Fuzzy set theory provides the math-
ematical strength to capture these uncertainties. In addition
to time delay, several other factors such as complexity,
uncertainty or vagueness can be considered while modeling
the neural network problems and this can be studied by the
application of fuzzy set theory [12], [13]. In this context, due
to the applications in image processing, pattern recognition
etc (see [14]–[17]and the references therein). The BAM
neural networks were first introduced by Kosko [18]–[20].
It is a special class of repetitive neural systems that can
store bipolar rector pairs. BAM neural networks are made
up of two neuron layers, i.e. U-layer and V-layer. The
neurons in a single layer are completely interconnected to the
neurons in the subsequent layer. There is no interconnection
among neurons in the same layer. In real life, BAM neural
networks have powerful information processing abilities and
some good application fields, such as information associative
memory, image processing, artificial intelligence, and so on.
In addition, time delays existing in axonal signal transmission
between real biological neurons have not been discussed in
BAM networks. On the other hand, time delays inevitably
happens in electronic neural systems inferable from the
unavoidable limited exchanging rate of intensifiers. Be that
as it may, a couple of concentrates centered dynamic of
BAM delayed neural systems. It is alluring to examine the
fuzzy BAM neural systems which has a potential [21]–[23]
significance in the design and applications of stable neural
circuits for neural networks with delays.

In signal transmission, the signal will become weak due
to diffusion in signal transmission, so it is very important

to consider that the activation varies in space as well as in
time and the reaction diffusion effects cannot be neglected
in both biological and man-made neural networks. However,
strictly speaking, diffusion effects cannot be avoided in the
neural networks when electrons are moving in asymmetric
electromagnetic fields. So we must consider that activations
change in space just as in time. In the real world, there are lots
of reaction diffusion phenomena in nature and engineering
fields. In signal transmission, the signal will become weak
due to diffusion in signal transmission, so it is very important
to consider that the activation varies in space as well as in
time and activations change in space just as in time. the
reaction-diffusion impacts can’t be dismissed in both organic
furthermore, man-made [24], [25]. As electrons transport in
a nonuniform electromagnetic field, the diffusion phenom-
ena could not be ignored. Therefore, in factual modeling,
only considering the change of time seems to be not com-
prehensive when electrons are moving in asymmetric and
nonuniform electromagnetic fields. Influenced by diffusion,
neural networks have rich spatial dynamical behaviors, like
various Special dynamics in reaction-diffusion systems was
originally proposed by Turing in 1952. This pioneering work
of Turing not only came into being a theoretical foundation
for understanding diverse patterns occurring in the natural
world, but also opened a new research field, namely, pattern
dynamics, which has received extensive attention and is still a
hot topic in many scientific fields such as species dynamics,
medicine, neural networks. However, the research on NNs
with both reaction-diffusion and time delay is still in its
infancy [26]–[30].

The purpose of this paper is to discuss the global asymp-
totic stability problem for system (5). Based on the Lyapunov
Krasovskii functional, sufficient conditions are established
in terms of the LMI. The major advantage of the proposed
method is that one may avoid calculating fractional-order
derivatives of the Lyapunov Krasovskii functionals. Two
illustrative examples are also given to show the validity and
feasibility of the theoretical results by using MATLAB LMI
toolbox. The main challenges and contributions of this paper
are summarized as follows:
(1)In order to overcome the difficulties of calculating the
fractional-order derivative of a function, we construct an
appropriate Lyapunov Krasovskii functional associated with
the Riemann – Liouville fractional integral, definite integral
and double integers, and calculate its first-order derivative to
derive the global asymptotic stability conditions.
(2)The addressed system includes reaction diffusion terms,
discrete delays, distributed delays, and fractional-order
derivative of the state. We take into account the impact of
these factors on the stability of network system simultane-
ously. The proposed results of this paper are described by
the LMIs, which are computationally feasible. The numerical
simulations of two illustrative examples are also presented
to show the effectiveness and feasibility of the theoretical
results.
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(3)However, to the best of our knowledge, not many creators
think about the synchronization of fractional order fuzzy
BAM neural networks with time varying delays and reaction
diffusion terms, up to now there are few papers published on
the existence and stability of equilibrium point and periodic
solution of the impulsive fuzzy high-order BAM neural
networks with continuously distributed delays. Most of the
existing papers mainly focus on the first-order systems with
time-varying and/or distributed delays. Compared with the
stability results of the neural networks, the ones of this paper
are more general and less conservative. Thus, it is important
and necessary to consider the fuzzy BAM neural networks
with time varying delays with reaction diffusion terms.

The rest of this paper is arranged as follows: in Section
2, the main results of this paper are described; next, in
Section 3, numerical simulations are presented to illustrate
the effectiveness and correctness of the main results; finally,
the conclusion of this paper is given in Section 4.

Notations:The notation used throughout this paper is fairly
standard.Rn andRm×n denote the set of n-dimensional real
vectors, m × n real matrices, respectively. The superscript
T denotes the matrix transposition. P ∈ Rn×n ≥ 0
means that matrix P is symmetric and semi-positive(semi-
negative)definite. In denotes an n × n real identity matrix.
AT is the transpose of matrix A. B−1 means the inverse of
matrix B. Let A = ATA where A ∈ Rn×n.

A. PRELIMINARIES
It is well known that the most common used fractional defini-
tions are adopted in this paper.

Definition 1. [31] Riemann-Liouville fractional integral of
order λ for a function f : R+ → R is defined as

RL
t0 I

λ
t f(t) =

1

Γ(λ)

∫ t

t0

(t− s)λ−1f(s)ds,

where Γ(·) is the Euler’s gamma function, which is denomi-
nated by

Γ(l) =

∫ +∞

0

exp(−w)tl−1dw, (Re(l) > 0),

where Re(l) is the real part of l.

Definition 2. [32] Riemann-Liouville fractional derivative
with order a for a functionf : R+ → R is defined as

RL
t0 D

λ
t f(t) =

1

Γ(m− λ)

dm

dtm

∫ t

t0

(t− τ)
m−α−1

x(s)ds,

where 0 ≤ m− 1 < λ < m,m ∈ Z+, Z+ denotes the
collection of all positive integers.

Lemma 1. [33] Let a vector-value function u(t) ⊂ Rn is
differentiable. Then, for any t > 0, one has

RL
0 Dλt (uT (t)Qu(t)) ≤ 2uT (t)(QRL0 Dλt u(t)), 0 < λ < 1.

Lemma 2. [34] Given constant matrices ξ1, ξ2, ξ3, where
ξ1 = ξT1 , ξ2 = ξT2 , and ξ2 > 0, then

ξ1 + ξT3 ξ
−1
2 ξ3 < 0

if and only if [
ξ1 ξT3
ξ3 −ξ2

]
< 0.

Lemma 3. [35] Suppose that x, y ∈ Rn be the two states
system (4), then we have

|
m∧
j=1

γijhj(ȳj)−
m∧
j=1

γijhj(yj)| ≤
m∑
j=1

|γij||hj(ȳj)− hj(yj)|,

|
m∨
j=1

δijhj(ȳj)−
m∨
j=1

δijhj(yj)| ≤
m∑
j=1

|δij||hj(ȳj)− hj(yj)|,

|
n∧

i=1

γ̃jigi(x̄i)−
n∧

i=1

γ̃jigi(xi)| ≤
n∑

i=1

|γ̃ji||gi(x̄i)− gi(xi)|,

|
n∨

i=1

δ̃jigi(x̄i)−
n∨

i=1

δ̃jigi(xi)| ≤
n∑

i=1

|δ̃ji||gi(x̄i)− gi(xi)|.

Lemma 4. [36] For any constant matrixM∈ Rn×n,M =
MT > 0, scalar α1 ≤ α2, the following inequalities hold:

− (α1 − α2)

∫ α1

α2

ΦT (s)MΦ(s)ds

≤ −
(∫ α1

α2

Φ(s)ds
)T
M
(∫ α1

α2

Φ(s)ds
)
.

Lemma 5. [37] If p > q > 0, then the following equality

RL
t0 D

p
t
RL
t0 I

q
t f(t) = RLt0 D

p−q
t f(t)

holds for sufficiently good functions f(t). In particular, this
relation holds if f(t) is integrable.

Lemma 6. [38] Let Ω be a cube |x| < l, and let h(x) be a
real-valued function belonging to C1(Ω), which vanishes on
the boundary dΩ of Ω, i.e., h(x)|dΩ = 0. Then,∫

Ω

h2(x)dx ≤ l2
∫
ω

(
∂h

∂x
)2dx.

Assumption 1. We assume σ(t) and τ(t) are time-varying
functions satisfying:

(1).0 ≤ σ(t) ≤ σ, σ̇(t) ≤ η,
(2).0 ≤ τ(t) ≤ τ, τ̇(t) ≤ µ.

whereσ, η, τ and µ are known constants.

Assumption 2. Each neuron activation function gi(t)(i = 1, 2, .., n)
in (1) are continuous and bounded, and satisfying the follow-
ing condition:

l−i ≤
gi(k1)− gi(k2)

k1 − k2
≤ li

+,∀k1, k2 ∈ R,

k1 6= k2, i = 1, 2...., n.
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Assumption 3. We assume the delay kernels Kij, K̃ij :
[0,∞) → [0,∞)(i = 1, 2, ...,m; j = 1, 2, ..., n) are non neg-
ative continuous functions that satisfy the following condi-
tions:

∫ ∞
0

Kij(s)ds =

∫ ∞
0

K̃ji(s)ds = 1

II. MAIN RESULTS
Consider the following fuzzy BAMNNs with time varying
delays:

∂λui(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
mik

∂ui(x, t)

∂xk

)
− piui(x, t)

+
n∑

j=1

aijfj(yj(x, t)) +
n∑

j=1

cijvj(x, t) +
n∧

j=1

Tijvj(x, t)

+

n∑
j=1

bijfj(yj(x, t− τ(t))) +

n∧
j=1

αijfj(yj(x, t− τ(t)))

+

n∨
j=1

βijfj(yj(x, t− τ(t))) +

n∨
j=1

Sijvj(x, t)

+
n∑

j=1

dij

∫ t

−∞
Kij(t− s)fj(yj(x, s))ds

+
n∧

j=1

γij

∫ t

−∞
Kij(t− s)fj(yj(x, s))ds

+
n∨

j=1

δij

∫ t

−∞
Kij(t− s)fj(yj(x, s))ds + Ii,

∂λyj(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
m̃jk

∂yj(x, t)

∂xk

)
− p̃jyj(x, t)

+
m∑
i=1

ãjigi(ui(x, t)) +
m∑
i=1

c̃jivi(x, t)

+
m∧
i=1

T̃jivi(x, t) +
m∑
i=1

b̃jigi(ui(x, t− σ(t)))

+
m∧
i=1

α̃jigi(ui(x, t− σ(t)))

+
m∨
i=1

β̃jigi(ui(x, t− σ(t))) +

m∨
i=1

S̃jivi(x, t)

+
m∑
i=1

d̃ji

∫ t

−∞
K̃ji(t− s)gi(ui(x, s))ds

+
m∧
i=1

γ̃ji

∫ t

−∞
K̃ji(t− s)gi(ui(x, s))ds

+
m∨
i=1

δ̃ji

∫ t

−∞
K̃ji(t− s)gi(ui(x, s))ds + Jj,

∂λui(x, t)

∂tλ
= ϕui

(x, t), t ∈ (−∞, 0], i = 1, 2, .....,m,

∂ληj(x, t)

∂tλ
= ψηj(x, t), t ∈ (−∞, 0], j = 1, 2, ....., n,

(1)

where ϕui
(x, s) and ψηj(x, s), i = 1, 2, ...,m, j = 1, 2, ..., n,

are continuous bounded functions defined on (−∞, 0] × Ω,
respectively. Where ∂λ denotes the fractional derivative op-
erator of order λ(0 < λ < 1); where m and n correspond to
the number of neurons in U -layer and η-layer, respectively.
For i = 1, 2, ...,m, j = 1, 2, ..., n x = (x1, x2, ..., xq)T εΩ ⊂
Rq,Ω is a bounded compact set with smooth boundary dΩ
and mess Ω > 0 in space Rq. u = (u1, u2, ..., um)

T
εRm,

η = (η1, η2, ..., ηn)
T
εRn, ui(x, t) and ηj(x, t) are the state of

the ith neuron and the jth neurons at time t and in space
x, respectively. pi > 0, p̃j > 0, and they denote the rate with
which the ith neuron and jth neuron will reset its potential
to the resting state in isolation when disconnected from the
networks and external inputs; aij , bij, ãij , b̃ij and cij, c̄ji are
denote the connection weights of the feedback template and
feed forward template, respectively. αij, βij,Tij and Sij are
elements of fuzzy feedback MIN template and fuzzy feedback
MAX template, fuzzy feed-forward MIN template and fuzzy
feed-forward MAX template in U-layer, respectively; α̃ji, β̃ji,
S̃ji, and T̃ji are elements of fuzzy feedback MIN template
and fuzzy feedback MAX template, fuzzy feed-forward MIN
template and fuzzy fee-forward MAX template in η-layer,
respectively;

∧
and

∨
denote the fuzzy AND and fuzzy OR

operations, respectively; Ii and Jj denote the external inputs
on the ith neurons in U-layer and the jth neurons in η-layer
at time t, respectively; Kij(·) and K̃ji(·)are delay kernels
functions. gi(·) and fj(·) are signal transmission functions
of i th neurons and j th neurons respectively.
The boundary conditions and the initial conditions are given
by

∂ui
∂m

:= (
∂ui
∂x1

,
∂ui
∂x2

, .....,
∂ui
∂xq

)T = 0, i = 1, 2, .........,m,

∂ηj
∂n

:= (
∂ηj
∂x1

,
∂ηj
∂x2

, .....,
∂ηj
∂xq

)T = 0, j = 1, 2, ........., n.

Considering that a fractional order fuzzy BAM neural
networks depends extremely on initial values, the initial
conditions of the slave system is defined to be different from
that of the master system. Therefore, a slave system with the
same form and parameters of master system (1) is introduced
as follows:

∂λūi(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
mik

∂ūi(x, t)

∂xk

)
− piūi(x, t)

+
n∑

j=1

aijfj(ȳj(x, t)) +
n∑

j=1

cijvj(x, t) +
n∧

j=1

Tijvj(x, t)

+
n∑

j=1

bijfj(ȳj(x, t− τ(t))) +
n∧

j=1

αijfj(ȳj(x, t− τ(t)))
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+
n∨

j=1

βijfj(ȳj(x, t− τ(t))) +
n∨

j=1

Sijvj(x, t)

+
n∑

j=1

dij

∫ t

−∞
Kij(t− s)fj(ȳj(x, s))ds

+
n∧

j=1

γij

∫ t

−∞
Kij(t− s)fj(ȳj(x, s))ds

+
n∨

j=1

δij

∫ t

−∞
Kij(t− s)fj(ȳj(x, s))ds + Ii,

∂λȳj(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
m̃jk

∂ȳj(x, t)

∂xk

)
− p̃jȳj(x, t)

+
m∑
i=1

ãjigi(ūi(x, t)) +
m∑
i=1

c̃jivi(x, t) +
m∧
i=1

T̃jivi(x, t)

+
m∑
i=1

b̃jigi(ūi(x, t− σ(t))) +
m∧
i=1

α̃jigi(ūi(x, t− σ(t)))

+
m∨
i=1

β̃jigi(ūi(x, t− σ(t))) +
m∨
i=1

S̃jivi(x, t)

+
m∑
i=1

d̃ji

∫ t

−∞
K̃ji(t− s)gi(ūi(x, s))ds

+

m∧
i=1

γ̃ji

∫ t

−∞
K̃ji(t− s)gi(ūi(x, s))ds

+

m∨
i=1

δ̃ji

∫ t

−∞
K̃ji(t− s)gi(ūi(x, s))ds + Jj,

∂λūi(x, t)

∂tλ
= θūi

(x, t), t ∈ (−∞, 0], i = 1, 2, .....,m,

∂λη̄j(x, t)

∂tλ
= ϑη̄j(x, t), t ∈ (−∞, 0], j = 1, 2, ....., n.

(2)

Defining the synchronization error signal as ei(x, t)and
ēj(x, t) can be obtained as follows:
ei(x, t) = ūi(x, t)− ui(x, t), ēj(x, t) = η̄j(x, t)− ηj(x, t)

∂λei(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
mik

∂ei(x, t)

∂xk

)
− piei(x, t)

+
n∑

j=1

aijfj(ēj(x, t)) +
n∑

j=1

bijfj(ēj(x, t− τ(t)))

+
n∑

j=1

|αij|fj(ēj(x, t− τ(t)))

+
n∑

j=1

|βij|fj(ēj(x, t− τ(t)))

+
n∑

j=1

dij

∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds

+
n∑

j=1

|γij|
∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds

+
n∑

j=1

|δij|
∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds,

∂λēj(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
m̃jk

∂ēj(x, t)

∂xk

)
− p̃jēj(x, t)

+
m∑
i=1

ãjigi(ei(x, t)) +
m∑
i=1

b̃jigi(ei(x, t− σ(t)))

+
m∑
i=1

|α̃ji|gi(ei(x, t− σ(t)))

+
m∑
i=1

|β̃ji|gi(ei(x, t− σ(t)))

+
m∑
i=1

d̃ji

∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds

+
m∑
i=1

|γ̃ji|
∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds

+
m∑
i=1

|δ̃ji|
∫ t

−∞
K̃ji(t− s)gi(ei(x, t))ds,

∂λei(x, t)

∂tλ
= θūi

(x, t)− ϕui
(x, t), t ∈ (−∞, 0],

∂λēj(x, t)

∂tλ
= ϑη̄j(x, t)− ψηj (x, t), t ∈ (−∞, 0].

(3)

We can rewrite the error system (3) as follows:

∂λei(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
mik

∂ei(x, t)

∂xk

)
− piei(x, t)

+
n∑

j=1

aijfj(ēj(x, t)) +
n∑

j=1

bijfj(ēj(x, t− τ(t)))

+

n∑
j=1

[|αij|+ |βij|]fj(ēj(x, t− τ(t)))

+
n∑

j=1

dij

∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds

+
n∑

j=1

[|γij|+ |δij|]
∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds,

∂λēj(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
m̃jk

∂ēj(x, t)

∂xk

)
− p̃jēj(x, t)

+
m∑
i=1

ãjigi(ei(x, t)) +
m∑
i=1

b̃jigi(ei(x, t− σ(t)))

+
m∑
i=1

[|α̃ji|+ |β̃ji|]gi(ei(x, t− σ(t)))

+
m∑
i=1

d̃ji

∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds
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+
m∑
i=1

[|γ̃ji|+ |δ̃ji|]
∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds.

(4)

Then, the system can be written in the following more com-
pact form:

∂λe(x, t)

∂tλ
=M∆e(x, t)− Pe(x, t) +Af(ē(x, t))

+ Bf(ē(x, t− τ(t))) + [|α|+ |β|]f(ē(x, t− τ(t)))

+D
∫ t

−∞
K(t− s)f(ē(x, s))ds

+ [|γ|+ |δ|]
∫ t

−∞
K(t− s)f(ē(x, s))ds,

∂λē(x, t)

∂tλ
= M̃∆ē(x, t)− P̃ ē(x, t) + Ãg(e(x, t))

+ B̃g(e(x, t− σ(t))) + [|α̃|+ |β̃|]g(e(x, t− σ(t)))

+ D̃
∫ t

−∞
K̃(t− s)g(e(x, s))ds

+ [|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)g(e(x, s))ds,

(5)

where
M = diag{m1,m2, .....,mn} ∈ Rn,
M̃ = diag{m̃1, m̃2, ....., m̃m} ∈ Rm,

P =


p11 · · · p1n
· · · · ·
· · · · ·
· · · · ·

pn1 · · · pnn

 ,

A =


a11 · · · a1n
· · · · ·
· · · · ·
· · · · ·

an1 · · · ann

 ,

B =


b11 · · · b1n
· · · · ·
· · · · ·
· · · · ·

bn1 · · · bnn

 ,

D =


d11 · · · d1n
· · · · ·
· · · · ·
· · · · ·

dn1 · · · dnn

 ,

P̃ =


p̃11 · · · p̃1m
· · · · ·
· · · · ·
· · · · ·

p̃m1 · · · p̃mm

 ,

Ã =


ã11 · · · ã1m
· · · · ·
· · · · ·
· · · · ·

ãm1 · · · ãmm

 ,

B̃ =


b̃11 · · · b̃1m
· · · · ·
· · · · ·
· · · · ·

b̃m1 · · · b̃mm

 ,

D̃ =


d̃11 · · · d̃1m
· · · · ·
· · · · ·
· · · · ·

d̃m1 · · · d̃mm

 .

Theorem 1. Assume that for given positive scalars α, β,γ, δ,
α̃, β̃, γ̃, δ̃, τ21 , τ21m, τ22m,σ2

1 , σ2
1m, σ2

2m, η, µ the system (5) is
globally asymptotically stable, if there exist positive matrices
S1 > 0, S2 > 0,R1 > 0,R2 > 0, R3 > 0,R4 > 0,R5 > 0,
T1 > 0,T2 > 0, T3 > 0,T4 > 0,T5 > 0, W1 > 0,W2 >
0,W3 > 0, Z1 > 0,Z2 > 0, Z3 > 0,H4 > 0, H5 > 0,
positive diagonal matrices Q1 > 0, Q2 > 0, Q3 > 0, Q4 >
0 with appropriate dimension such that the following LMI
holds:

(Ωij)24×24 < 0. (6)

where,

Ω(1,1) =
−S1
l21
M−S1P +R2 + τ21W1 + τ22mW3 +Q1,

Ω(1,2) = S1A, Ω(1,3) = S1B + S1[|α|+ |β|],
Ω(1,4) = S1D + S1[|γ|+ |δ|],Ω(2,2) = H4 +R5 −Q3,

Ω(3,3) = −R5(1− µ), Ω(4,4) = −H4,

Ω(5,5) = R1 −R2 +R3 + τ21mW2,

Ω(6,6) = −R1(1− µ) +Q2,Ω(7,7) = −R3 +R4,

Ω(8,8) = −R4,Ω(9,9) = −W1,

Ω(10,10) = −W2,Ω(11,11) = −W3,

Ω(12,12) =
−S2

l22
M̃ − S2P̃ + T2 + σ2

1Z1 + σ2
2mZ3 +Q3,

Ω(12,13) = S2Ã,Ω(13,13) = H5 + T5 −Q1,

Ω(12,14) = S2B̃ + S2[|α̃|+ |β̃|],Ω(14,14) = −T5(1− η),

Ω(12,15) = S2D̃ + S2[|γ̃|+ |δ̃|],
Ω(15,15) = −H5,Ω(16,16) = T1 − T2 + T3 + σ2

1mZ2,

Ω(17,17) = −T1(1− η) +Q4,Ω(18,18) = −T3 + T4,
Ω(19,19) = −T4, Ω(20,20) = −Z1,

Ω(21,21) = −Z2, Ω(22,22) = −Z3,

Ω(23,23) = −Q2, Ω(24,24) = −Q4.

Proof. : Let us consider the following Lyapunov Krasovskii
functional,
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V1(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t eT (x, t)S1e(x, t)

+
1

2
RL
t0 I

1−λ
t ēT (x, t)S2ē(x, t)

}
dx, (7)

V2(x, t) =

∫
Ω

{∫ t−τ1

t−τ(t)

eT (x, s)R1e(x, s)ds +

∫ t

t−τ1
eT (x, s)

×R2e(x, s)ds +

∫ t−τ1

t−τm
eT (x, s)R3e(x, s)ds

+

∫ t−τm

t−τ2
eT (x, s)R4e(x, s)ds +

∫ t

t−τ(t)

fT ē(x, s)

×R5f(ē(x, s))ds
}
dx, (8)

V3(x, t) =

∫
Ω

{∫ t−σ1

t−σ(t)

ēT (x, s)T1ē(x, s)ds +

∫ t

t−σ1

ēT (x, s)

× T2ē(x, s)ds +

∫ t−σ1

t−σm

ēT (x, s)T3ē(x, s)ds

+

∫ t−σm

t−σ2

ēT (x, s)T4ē(x, s)ds

+

∫ t

t−σ(t)

gT (e(x, s)T5g(e(x, s))ds
}
dx, (9)

V4(x, t) =

∫
Ω

{
τ1

∫ 0

−τ1

∫ t

t+θ

eT (x, s)W1e(x, s)dsdθ

+ τ1m

∫ −τ1
−τm

∫ t−τ1

t+β

eT (x, s)W2e(x, s)dsdβ

+ τ2m

∫ −τm
−τ2

∫ t

t+β

eT (x, s)W3e(x, s)dsdβ
}
dx,

(10)

V5(x, t) =

∫
Ω

{
σ1

∫ 0

−σ1

∫ t

t+θ

ēT (x, s)Z1ē(x, s)dsdθ

+ σ1m

∫ −σ1

−σm

∫ t−σ1

t+β

ēT (x, s)Z2ē(x, s)dsdβ

+ σ2m

∫ −σm

−σ2

∫ t

t+β

ēT (x, s)Z3ē(x, s)dsdβ
}
dx,

(11)

V6(x, t) =

∫
Ω

{ n∑
j=1

(h4)j

∫ ∞
0

Kj(θ)

×
∫ t

t−θ
f2j (ēj(x, s))dsdθ

}
dx, (12)

V7(x, t) =

∫
Ω

{ m∑
i=1

(h5)i

∫ ∞
0

K̃i(θ)

×
∫ t

t−θ
g2
i (ei(x, s))dsdθ

}
dx. (13)

From Green’s formula and the boundary conditions, the
following equality holds:∫

Ω

eT (x, t)M∆e(x, t)dx =

∫
Ω

e(x, t)m∆e(x, t)dx

= m

∫
Ω

e(x, t)∆e(x, t)dx

= m
[
−
∫

Ω

(
∂e(x, t)

∂x

)2
]dx. (14)

According to Lemma (6), the following inequality can be
obtained:

m
[
−
∫

Ω

(
∂e(x, t)

∂x

2)
]dx ≤ m

[
− 1

l2

∫
Ω

e2(x, t)]dx

= − 1

l2
m

∫
Ω

e2(x, t)dx

= − 1

l2

∫
Ω

eT (x, t)Me(x, t)dx. (15)

Taking the time derivative of V(t) along the trajectories of
(5), it is evident that e(x, t),̄e(x, t) and ∂λe(x,t)

∂tλ
and∂

λē(x,t)
∂tλ

are continuous. Then, by Lemma (1) and Lemma (5), the
following holds:

V̇1(x, t) =

∫
Ω

S1
{−1
l21

eT (x, t)Me(x, t)− eT (x, t)Pe(x, t)

+ eT (x, t)Af(ē(x, t)) + eT (x, t)Bf(ē(x, t− τ(t)))

+ eT (x, t)[|α|+ |β|]f(ē(x, t− τ(t)))

+ eT (x, t)D
∫ t

−∞
K(t− s)f(ē(x, s))ds

+ eT (x, t)[|γ|+ |δ|]
∫ t

−∞
K(t− s)f(ē(x, s))ds

}
dx

+

∫
Ω

S2
{−1
l22

ēT (x, t)M̃ē(x, t)− ēT (x, t)P̃ ē(x, t)

+ ēT (x, t)Ãg(e(x, t)) + ēT (x, t)B̃g(e(x, t− σ(t)))

+ ēT (x, t)[|α̃|+ |β̃|]g(e(x, t− σ(t)))

+ eT (x, t)D̃

∫ t

−∞
K̃(t− s)g(e(x, s))ds

+ ēT (x, t)[|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)g(e(x, s))ds

}
dx,

(16)

V̇2(x, t) =

∫
Ω

{
eT (x, t− τ1)[R1 −R2 +R3]e(x, t− τ1)

+ eT (x, t− τ(t))[−R1(1− µ)]e(x, t− τ(t))

+ eT (x, t)[R2]e(x, t) + eT (x, t− τm)[−R3 +R4]

× e(x, t− τm) + eT (x, t− τ2)[−R4]e(x, t− τ2)

+ fT (ē(x, t))[R5]f(ē(x, t)) + fT (ē(x, t− τ(t)))

× [−R5(1− µ)]f(ē(x, t− τ(t)))
}
dx, (17)

V̇3(x, t) =

∫
Ω

{
ēT (x, t− σ1)[T1 − T2 + T3 ]̄e(x, t− σ1)
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+ ēT (x, t− σ(t))[−T1(1− η)]̄e(x, t− σ(t))

+ ēT (x, t)[T2 ]̄e(x, t) + ēT (x, t− σm)[−T3 + T4]

× ē(x, t− σm) + ēT (x, t− σ2)[−T4 ]̄e(x, t− σ2)

+ gT (e(x, t))[T5]g(e(x, t)) + gT (e(x, t− σ(t)))

× [−T5(1− η)]g(e(x, t− σ(t)))
}
dx, (18)

V̇4(x, t) =

∫
Ω

{
eT (x, t)[τ21W1 + τ22mW3]e(x, t)

+ eT (x, t− τ1)[τ21mW2]e(x, t− τ1)

− τ1
∫ t

t−τ1
eT (x, s)W1e(x, s)ds

− τ1m
∫ t−τ1

t−τm
eT (x, s)W2e(x, s)ds

− τ2m
∫ t−τm

t−τ2
eT (x, s)W3e(x, s)ds

}
dx, (19)

V̇5(x, t) =

∫
Ω

{
ēT (x, t)[σ2

1Z1 + σ2
2mZ3 ]̄e(x, t)

+ ēT (x, t− σ1)[σ2
1mZ2 ]̄e(x, t− σ1)

− σ1
∫ t

t−σ1

ēT (x, s)Z1ē(x, s)ds

− σ1m
∫ t−σ1

t−σm

ēT (x, s)Z2ē(x, s)ds

− σ2m
∫ t−σm

t−σ2

ēT (x, s)Z3ē(x, s)ds
}
dx, (20)

V̇6(x, t) =

∫
Ω

{
fT (ē(x, t))H4f(ē(x, t))

− (

∫ t

−∞
K(t− s)f(ē(x, s))ds)

TH4

× (

∫ t

−∞
K(t− s)f(ē(x, s))ds)

}
dx, (21)

V̇7(x, t) =

∫
Ω

{
gT (e(x, t))H5g(e(x, t))

− (

∫ t

−∞
K̃(t− s)g(e(x, s))ds)TH5

× (

∫ t

−∞
K̃(t− s)g(e(x, s))ds)

}
dx, (22)

Using Lemma (4), we have

− τ1
∫ t

t−τ1
eT (x, s)W1e(x, s)ds

≤ −
(∫ t

t−τ1
e(x, s)ds

)T
W1

(∫ t

t−τ1
e(x, s)ds

)
(23)

− τ1m
∫ t−τ1

t−τm
eT (x, s)W2e(x, s)ds

≤ −
(∫ t−τ1

t−τm
e(x, s)ds

)T
W2

(∫ t−τ1

t−τm
e(x, s)ds

)
(24)

− τ2m
∫ t−τm

t−τ2
eT (x, s)W3e(x, s)ds

≤ −
(∫ t−τm

t−τ2
e(x, s)

)T
W3

(∫ t−τm

t−τ2
e(x, s)

)
(25)

− σ1
∫ t

t−σ1

ēT (x, s)Z1ē(x, s)ds

≤
(∫ t

t−σ1

ē(x, s)ds
)T
Z1

(∫ t

t−σ1

ē(x, s)ds
)

(26)

− σ1m
∫ t−σ1

t−σm

ēT (x, s)Z2ē(x, s)ds

≤
(∫ t−σ1

t−σm

ē(x, s)ds
)T
Z2

(∫ t−σ1

t−σm

ē(x, s)ds
)

(27)

− σ2m
∫ t−σm

t−σ2

ēT (x, s)Z3ē(x, s)ds

≤
(∫ t−σm

t−σ2

ē(x, s)ds
)T
Z3

(∫ t−σm

t−σ2

ē(x, s)ds
)

(28)

From the Assumption 2, we have

0 ≤ eT (x, t)Q1e(x, t)− gT (e(x, t))Q1g(e(x, t)), (29)

0 ≤ eT (x, t− τ(t))Q2e(x, t− τ(t))

− gT (e(x, t− τ(t)))Q2g(e(x, t− τ(t))), (30)

0 ≤ ēT (x, t)Q3ē(x, t)− fT (ē(x, t))Q3f(ē(x, t)), (31)

0 ≤ ēT (x, t− σ(t))Q4ē(x, t− σ(t))

− fT (ē(x, t− σ(t)))Q4f(ē(x, t− σ(t))). (32)

Combining from (16) to (32), we have

V̇(x, t) ≤ θT1 Ωθ1(t). (33)

where,

θ1 = [eT (x, t), fT (ē(x, t)), fT (ē(x, t− τ(t))),

(

∫ t

−∞
K(t− s)f(ē(x, s))ds)

T
, eT (x, t− τ1),

eT (x, t− τ(t)), eT (x, t− τm), eT (x, t− τ2),

(

∫ t

t−τ1
e(x, s)ds)T , (

∫ t−τ1

t−τm
e(x, s)ds)T ,

(

∫ t−τm

t−τ2
e(x, s)ds)T , ēT (x, t), gT (e(x, t)),

gT (e(x, t− σ(t))),(

∫ t

−∞
K̃(t− s)g(e(x, s))ds)T ,

ēT (x, t− σ1), ēT (x, t− σ(t)), ēT (x, t− σm),

ēT (x, t− σ2), (

∫ t

t−σ1

ē(x, s)ds)T ,
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(

∫ t−σ1

t−σm

ē(x, s)ds)T , (

∫ t−σm

t−σ2

ē(x, s)ds)T ,

gT (e(x, t− τ(t))), fT (ē(x, t− σ(t)))]T . (34)

From condition (6), we have

V̇(x, t) ≤ 0 (35)

Therefore, V̇(x, t) is negative definite from (6). Therefore,
we can conclude that the error system (3) has a unique
equilibrium point which is globally asymptotically stable. As
a result, the response system (2) with various time delays is
globally synchronized with and drive system (1).This com-
pletes the proof.

Remark 1. Suppose that we will design a suitable feedback
controller, under this case, the system (3) is reduce to the
following form:

In the following, we will design a suitable feedback con-
troller, which are

θi(t) = Kiei(t),

θj(t) = K̄jēj(t), (36)

where the feedback gains K, K̄ are to be designed.

∂λei(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
mik

∂ei(x, t)

∂xk

)
− piei(x, t)

+
n∑

j=1

aijfj(ēj(x, t)) +
n∑

j=1

bijfj(ēj(x, t− τ(t)))

+
n∑

j=1

|αij|fj(ēj(x, t− τ(t)))

+
n∑

j=1

|βij|fj(ēj(x, t− τ(t)))

+

n∑
j=1

dij

∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds

+
n∑

j=1

|γij|
∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds

+
n∑

j=1

|δij|
∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds

+ θi(t),

∂λēj(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
m̃jk

∂ēj(x, t)

∂xk

)
− p̃jēj(x, t)

+
m∑
i=1

ãjigi(ei(x, t)) +
m∑
i=1

b̃jigi(ei(x, t− σ(t)))

+
m∑
i=1

|α̃ji|gi(ei(x, t− σ(t)))

+
m∑
i=1

|β̃ji|gi(ei(x, t− σ(t)))

+
m∑
i=1

d̃ji

∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds

+
m∑
i=1

|γ̃ji|
∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds

+
m∑
i=1

|δ̃ji|
∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds

+ θj(t).

∂λei(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
mik

∂ei(x, t)

∂xk

)
− piei(x, t)

+
n∑

j=1

aijfj(ēj(x, t)) +
n∑

j=1

bijfj(ēj(x, t− τ(t)))

+
n∑

j=1

|αij|fj(ēj(x, t− τ(t)))

+
n∑

j=1

|βij|fj(ēj(x, t− τ(t)))

+
n∑

j=1

dij

∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds

+
n∑

j=1

|γij|
∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds

+

n∑
j=1

|δij|
∫ t

−∞
Kij(t− s)fj(ēj(x, s))ds

+Kiei(x, t),

∂λēj(x, t)

∂tλ
=

q∑
k=1

∂

∂xk

(
m̃jk

∂ēj(x, t)

∂xk

)
− p̃jēj(x, t)

+
m∑
i=1

ãjigi(ei(x, t)) +
m∑
i=1

b̃jigi(ei(x, t− σ(t)))

+
m∑
i=1

|α̃ji|gi(ei(x, t− σ(t)))

+
m∑
i=1

|β̃ji|gi(ei(x, t− σ(t)))

+
m∑
i=1

d̃ji

∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds

+
m∑
i=1

|γ̃ji|
∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds

+
m∑
i=1

|δ̃ji|
∫ t

−∞
K̃ji(t− s)gi(ei(x, s))ds

+ K̄jēj(x, t).

Now we can write in compact form as follows:

∂λe(x, t)

∂tλ
=M∆(x, t)− Pe(x, t) +Af(ē(x, t))
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+ Bf(ē(x, t− τ(t))) + [|α|+ |β|]f(ē(x, t− τ(t)))

+D
∫ t

−∞
K(t− s)f(ē(x, s))ds

+ [|γ|+ |δ|]
∫ t

−∞
K(t− s)f(ē(x, s))ds +Ke(x, t),

∂λē(x, t)

∂tλ
= M̃∆ē(x, t)− P̃ ē(x, t) + Ãg(e(x, t))

+ B̃g(e(x, t− σ(t))) + [|α̃|+ |β̃|]g(e(x, t− σ(t)))

+ D̃
∫ t

−∞
K̃(t− s)g(e(x, s))ds

+ [|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)g(e(x, s))ds + K̄ē(x, t),

(37)

Theorem 2. Assume that for given positive scalars α, β,γ,
δ, α̃, β̃, γ̃, δ̃, τ21 , σ2

1 , η, µ the system (37) is globally
asymptotically stable, if there exist positive matrices S1 > 0,
S2 > 0, R6 > 0, R7 > 0 ,R8 > 0 R9 > 0, W5 > 0,
W6 > 0, H7 > 0, H8 > 0, positive diagonal matrices
Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0 with appropriate
dimension such that the following LMI holds:

(Ψij)14×14 < 0. (38)

where,

Ψ(1,1) =
−MS1
l21

− S1P + S1K +R6 + τ21W5 +Q1,

Ψ(1,2) = S1A, Ψ(1,3) = S1B + S1[|α|+ |β|],
Ψ(1,4) = S1D + S1[|γ|+ |δ|], Ψ(2,2) = R8 +H7 −Q3,

Ψ(3,3) = −R8(1− µ), Ψ(4,4) = −H7,

Ψ(5,5) = −R6(1− µ) +Q2,Ψ(6,6) = −W5,

Ψ(7,7) =
−M̃S2
l21

− S2P̃ + S2K̄ +R7 + σ2
1W6 +Q3,

Ψ(7,8) = S2Ã,Ψ(7,9) = B̃S2 + S2[|α̃|+ |β̃|],
Ψ(7,10) = D̃S2 + S2[|γ̃|+ |δ̃|], Ψ(8,8) = R9 +H8 −Q1,

Ψ(9,9) = −R9(1− η),Ψ(10,10) = −H8,

Ψ(11,11) = −R7(1− η) +Q4,Ψ(12,12) = −W6,

Ψ(13,13) = −Q2,Ψ(14,14) = −Q4.

Proof: We Construct Lypunov Krasovskii functional as
follows:

V1(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t eT (x, t)S1e(x, t)

}
dx, (39)

V2(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t ēT (x, t)S2ē(x, t)

}
dx, (40)

V3(x, t) =

∫
Ω

{∫ t

t−τ(t)

eT (x, s)R6e(x, s)ds
}
dx, (41)

V4(x, t) =

∫
Ω

{∫ t

t−σ(t)

ēT (x, s)R7ē(x, s)ds
}
dx, (42)

V5(x, t) =

∫
Ω

{∫ t

t−τ(t)

fT (ē(x, s))R8f(ē(x, s))ds
}
dx, (43)

V6(x, t) =

∫
Ω

{∫ t

t−σ(t)

gT (e(x, s))R9g(e(x, s))ds
}
dx,

(44)

V7(x, t) =

∫
Ω

{
τ1

∫ 0

−τ1

∫ t

t+θ

eT (x, s)W5e(x, s)dsdθ
}
dx,

(45)

V8(x, t) =

∫
Ω

{
σ1

∫ 0

−σ1

∫ t

t+θ

ēT (x, s)W6ē(x, s)dsdθ
}
dx,

(46)

V9(x, t) =

∫
Ω

{ n∑
j=1

(h7)j

∫ ∞
0

Kj(θ)

×
∫ t

t−θ
f2j (ēj(x, s))dsdθ

}
dx, (47)

V10(x, t) =

∫
Ω

{ m∑
i=1

(h8)i

∫ ∞
0

K̃i(θ)

×
∫ t

t−θ
g2i (ei(x, s))dsdθ

}
dx. (48)

Taking the time derivative of V(t) along the trajectories of
(37), it is evident that e(x, t),̄e(x, t) and ∂λe(x,t)

∂tλ
and∂

λē(x,t)
∂tλ

are continuous. Then, by Lemma (1) and Lemma (5), the
following holds:

V̇1(x, t) =

∫
Ω

S1
{−1
l21

eT (x, t)Me(x, t)− eT (x, t)Pe(x, t)

+ eT (x, t)Af(ē(x, t)) + eT (x, t)Bf(ē(x, t− τ(t)))

+ eT (x, t)[|α|+ |β|]f(ē(x, t− τ(t))) + eT (x, t)

×D
∫ t

−∞
K(t− s)f(ē(x, s))ds + eT (x, t)

× [|γ|+ |δ|]
∫ t

−∞
K(t− s)f(ē(x, s))ds

+Ke(x, t)
}
dx, (49)

V̇2(x, t) =

∫
Ω

S2
{−1
l22

ēT (x, t)M̃ē(x, t)− ēT (x, t)P̃ ē(x, t)

+ ēT (x, t)Ãg(e(x, t)) + ēT (x, t)B̃g(e(x, t− σ(t)))

+ ēT (x, t)[|α̃|+ |β̃|]g(e(x, t− σ(t)))

+ eT (x, t)D̃
∫ t

−∞
K̃(t− s)g(e(x, s))ds

+ ēT (x, t)[|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)g(e(x, s))ds
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+ K̄e(x, t)
}
dx, (50)

V̇3(x, t) =

∫
Ω

{
eT (x, t)R6e(x, t)− eT (x, t− τ(t))

×R6e(x, t− τ(t))(1− µ)
}
dx, (51)

V̇4(x, t) =

∫
Ω

{
ēT (x, t)R7ē(x, t)− ēT (x, t− σ(t))

×R7ē(x, t− σ(t))(1− η)
}
dx, (52)

V̇5(x, t) =

∫
Ω

{
fT (ē(x, t))R8f(ē(x, t))− fT (ē(x, t− τ(t)))

×R8f(ē(x, t− τ(t)))(1− µ)
}
dx, (53)

V̇6(x, t) =

∫
Ω

{
gT (e(x, t))R9g(e(x, t))− gT (e(x, t− σ(t)))

×R9g(e(x, t− σ(t)))(1− η)
}
dx, (54)

V̇7(x, t) =

∫
Ω

{
eT (x, t)τ21W5e(x, t)− τ1

∫ t

t−τ1
eT (x, s)

×W5e(x, s)ds
}
dx, (55)

V̇8(x, t) =

∫
Ω

{
ēT (x, t)σ2

1W6ē(x, t)− σ1
∫ t

t−σ1

ēT (x, s)

×W6ē(x, s)ds
}
dx, (56)

V̇9(x, t) =

∫
Ω

{
fT (ē(x, t))H7f(ē(x, t))

− (

∫ t

−∞
K(t− s)f(ē(x, s))ds)

T
H7

× (

∫ t

−∞
K(t− s)f(ē(x, s))ds)

}
dx, (57)

V̇10(x, t) =

∫
Ω

{
gT (e(x, t))H8g(e(x, t))

− (

∫ t

−∞
K̃(t− s)g(e(x, s))ds)TH8

× (

∫ t

−∞
K̃(t− s)g(e(x, s))ds)

}
dx (58)

Using Lemma 4, we have

− τ1
∫ t

t−τ1
eT (x, s)W1e(x, s)ds

≤ −
(∫ t

t−τ1
e(x, s)ds

)T
W1

(∫ t

t−τ1
e(x, s)ds

)
(59)

− σ1
∫ t

t−σ1

ēT (x, s)Z1ē(x, s)ds

≤
(∫ t

t−σ1

ē(x, s)ds
)T
Z1

(∫ t

t−σ1

ē(x, s)ds
)

(60)

From the Assumption 2, we have

0 ≤ eT (x, t)Q1e(x, t)− gT (e(x, t))Q1g(e(x, t)), (61)

0 ≤ eT (x, t− τ(t))Q2e(x, t− τ(t))

− gT (e(x, t− τ(t)))Q2g(e(x, t− τ(t))), (62)

0 ≤ ēT (x, t)Q3ē(x, t)− fT (ē(x, t))Q3f(ē(x, t)), (63)

0 ≤ ēT (x, t− σ(t))Q4ē(x, t− σ(t))

− fT (ē(x, t− σ(t)))Q4f(ē(x, t− σ(t))). (64)

Combining from (49) to (64), we have

V̇(x, t) ≤ θT2 Ψθ2(t). (65)

where,

θ2 = [eT (x, t), fT (ē(x, t)), fT (ē(x, t− τ(t))),

(

∫ t

−∞
K(t− s)f(ē(x, s))ds)

T
, eT (x, t− τ(t)),

(

∫ t

t−τ1
e(x, s)ds)T , ēT (x, t), gT (e(x, t)),

gT (e(x, t− σ(t))),(

∫ t

−∞
K̃(t− s)g(e(x, s))ds)T ,

ēT (x, t− σ(t)), (

∫ t

t−σ1

ē(x, s)ds)T ,

gT (e(x, t− τ(t))), fT (ē(x, t− σ(t)))]T . (66)

Therefore, we can conclude that the error system (37) has
a unique equilibrium point which is globally asymptotically
stable. As a result, the response system (2) with various
time delays is globally synchronized with and drive system
(1).This completes the proof.

Remark 2. Suppose, the diffusion terms are not taken in
system (5), then the system (5) can be remodified as follows:

∂λe(x, t)

∂tλ
= −Pe(x, t) +Af(ē(x, t)) + Bf(ē(x, t− τ(t)))

+ [|α|+ |β|]f(ē(x, t− τ(t)))

+D
∫ t

−∞
K(t− s)f(ē(x, s))ds

+ [|γ|+ |δ|]
∫ t

−∞
K(t− s)f(ē(x, s))ds,

∂λē(x, t)

∂tλ
= −P̃ ē(x, t) + Ãg(e(x, t)) + B̃g(e(x, t− σ(t)))

+ [|α̃|+ |β̃|]g(e(x, t− σ(t)))

+ D̃
∫ t

−∞
K̃(t− s)g(e(x, s))ds

+ [|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)g(e(x, s))ds,

(67)
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Theorem 3. Assume that for given positive scalars α, β,γ, δ,
α̃, β̃, γ̃, δ̃, τ21 , τ21m, τ22m,σ2

1 , σ2
1m, σ2

2m, η, µ the system (67) is
globally asymptotically stable, if there exist positive matrices
S1 > 0, S2 > 0,R1 > 0,R2 > 0, R3 > 0,R4 > 0,R5 > 0,
T1 > 0,T2 > 0, T3 > 0,T4 > 0,T5 > 0, W1 > 0,W2 >
0,W3 > 0, Z1 > 0,Z2 > 0, Z3 > 0,H4 > 0, H5 > 0,
positive diagonal matrices Q1 > 0, Q2 > 0, Q3 > 0, Q4 >
0 with appropriate dimension such that the following LMI
holds:

(Φij)24×24 < 0. (68)

where,

Φ(1,1) = −S1P +R2 + τ21W1 + τ22mW3 +Q1,

Φ(1,2) = S1A, Φ(1,3) = S1B + S1[|α|+ |β|],
Φ(1,4) = S1D + S1[|γ|+ |δ|],Φ(2,2) = H4 +R5 −Q3,

Φ(3,3) = −R5(1− µ), Φ(4,4) = −H4,

Φ(5,5) = R1 −R2 +R3 + τ21mW2,

Φ(6,6) = −R1(1− µ) +Q2,Φ(7,7) = −R3 +R4,

Φ(8,8) = −R4,Φ(9,9) = −W1,

Φ(10,10) = −W2,Φ(11,11) = −W3,

Φ(12,12) = −S2P̃ + T2 + σ2
1Z1 + σ2

2mZ3 +Q3,

Φ(12,13) = S2Ã,Φ(13,13) = H5 + T5 −Q1,

Φ(12,14) = S2B̃ + S2[|α̃|+ |β̃|],Φ(14,14) = −T5(1− η),

Φ(12,15) = S2D̃ + S2[|γ̃|+ |δ̃|],
Φ(15,15) = −H5,Φ(16,16) = T1 − T2 + T3 + σ2

1mZ2,

Φ(17,17) = −T1(1− η) +Q4,Φ(18,18) = −T3 + T4,
Φ(19,19) = −T4, Φ(20,20) = −Z1,

Φ(21,21) = −Z2, Φ(22,22) = −Z3,

Φ(23,23) = −Q2,Φ(24,24) = −Q4.

From condition (68), we have

V̇(x, t) ≤ 0 (69)

Proof. The proof is similar to that in the proof of Theorem 1
by neglecting diffusion term.

Remark 3. Suppose, the discrete delays are not appear in
system (5), then the system (5) can be remodified as follows:

∂λe(x, t)

∂tλ
=M∆e(x, t)− Pe(x, t) +Af(ē(x, t))

+D
∫ t

−∞
K(t− s)f(ē(x, s))ds

+ [|γ|+ |δ|]
∫ t

−∞
K(t− s)f(ē(x, s))ds,

∂λē(x, t)

∂tλ
= M̃∆ē(x, t)− P̃ ē(x, t) + Ãg(e(x, t))

+ D̃
∫ t

−∞
K̃(t− s)g(e(x, s))ds

+ [|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)g(e(x, s))ds.

(70)

Theorem 4. Assume that for given positive scalars γ, δ, γ̃,
δ̃, the system (70) is globally asymptotically stable, if there
exist positive matrices S1 > 0, S2 > 0, H4 > 0, H5 > 0,
positive diagonal matricesQ1 > 0,Q3 > 0 with appropriate
dimension such that the following LMI holds:

(Υi,j)6,6 < 0. (71)

where,

Υ(1,1) =
−S1
l21
M−S1P +Q1, Υ(1,2) = S1A,

Υ(1,3) = S1D + S1[|γ|+ |δ|],Υ(2,2) = H4 −Q3,

Υ(3,3) = −H4,Υ(4,4) =
−S2
l22
M̃ − S2P̃ +Q3

Υ(4,5) = ÃS2,Υ(4,6) = D̃S2 + S2[|γ̃|+ |δ̃|],
Υ(5,5) = H5 −Q1, Υ(6,6) = −H5.

Proof. : Now let us define Lyapunov Krasovskii functional as
follows:

V1(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t eT (x, t)S1e(x, t)

}
dx, (72)

V2(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t ēT (x, t)S2ē(x, t)

}
dx, (73)

V3(x, t) =

∫
Ω

{ n∑
j=1

(h4)j

∫ ∞
0

Kj(θ)

×
∫ t

t−θ
f2j(ēj(x, s)))dsdθ

}
dx, (74)

V4(x, t) =

∫
Ω

{ m∑
i=1

(h5)i

∫ ∞
0

K̃i(θ)

×
∫ t

t−θ
g2i (ei(gi(x, s)))dsdθ

}
dx. (75)

Taking the time derivative of V(t) along the trajectories of
(70), it is evident that e(x, t),̄e(x, t) and ∂λe(x,t)

∂tλ
and∂

λē(x,t)
∂tλ

are continuous. Then, by Lemma (1) and Lemma (5), the
following holds:

V̇1(x, t) =

∫
Ω

S1
{−1
l21

eT (x, t)Me(x, t)− eT (x, t)Pe(x, t)

+ eT (x, t)Af(ē(x, t)) + eT (x, t)D
∫ t

−∞
K(t− s)

× f(ē(x, s))ds + eT (x, t)[|γ|+ |δ|]
∫ t

−∞
K(t− s)

× f(ē(x, s))ds
}
dx, (76)

V̇2(x, t) =

∫
Ω

S2
{−1
l22

ēT (x, t)M̃ē(x, t)− ēT (x, t)P̃ ē(x, t)
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+ ēT (x, t)Ãg(e(x, t)) + eT (x, t)D̃
∫ t

−∞
K̃(t− s)

× g(e(x, s))ds + ēT (x, t)[|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)

× g(e(x, s))ds
}
dx, (77)

V̇3(x, t) =

∫
Ω

{
fT (ē(x, t))H4f(ē(x, t))− (

∫ t

−∞
K(t− s)

× f(ē(x, s))ds)
TH4(

∫ t

−∞
K(t− s)f(ē(x, s))ds)

}
dx,

(78)

V̇4(x, t) =

∫
Ω

{
gT (e(x, t))H5g(e(x, t))− (

∫ t

−∞
K̃(t− s)

× g(e(x, s))ds)TH5(

∫ t

−∞
K̃(t− s)g(e(x, s))ds)

}
dx,

(79)

From the Assumption 2, we have

0 ≤ eT (x, t)Q1e(x, t)− gT (e(x, t))Q1g(e(x, t)), (80)

0 ≤ ēT (x, t)Q3ē(x, t)− fT (ē(x, t))Q3f(ē(x, t)), (81)

V̇(x, t) ≤ θT3 Υθ3(t). (82)

where,

θ3 = [eT (x, t), fT (ē(x, t)), (

∫ t

−∞
K(t− s)f(ē(x, s))ds)T ,

ēT (x, t), gT (e(x, t)), (

∫ t

−∞
K̃(t− s)g(e(x, s))ds

T
]T .

From condition (71), we have

V̇(x, t) ≤ 0.

Therefore, we can conclude that the error system (70) has
a unique equilibrium point which is globally asymptotically
stable. As a result, the response system (2) with various
time delays is globally synchronized with and drive system
(1).This completes the proof.

Remark 4. Suppose, the distributed delays are not appear in
system (5), then the system (5) can be remodified as follows:

∂λe(x, t)

∂tλ
=M∆e(x, t)− Pe(x, t) +Af(ē(x, t))

+ Bf(ē(x, t− τ(t))) + [|α|+ |β|]f(ē(x, t− τ(t))),

∂λē(x, t)

∂tλ
= M̃∆ē(x, t)− P̃ ē(x, t) + Ãg(e(x, t))

+ B̃g(e(x, t− σ(t))) + [|α̃|+ |β̃|]g(e(x, t− σ(t))).

(83)

Theorem 5. Assume that for given positive scalars α, β, α̃,
β̃, η, µ the system (83) is globally asymptotically stable, if
there exist positive matrices S1 > 0, S2 > 0,R1 > 0,R2 >
0, R3 > 0, R4 > 0, R5 > 0, T1 > 0, T2 > 0, T3 > 0,
T4 > 0, T5 > 0, positive diagonal matricesQ1 > 0,Q2 > 0,
Q3 > 0, Q4 > 0 with appropriate dimension such that the
following LMI holds:

(Λi,j)16×16 < 0. (84)

where,

Λ(1,1) =
−S1
l1

2 M−S1P +R2 +Q1,

Λ(1,2) = S1A, Λ(2,2) = R5 −Q3,

Λ(1,3) = S1B + S1[|α|+ |β|],Λ(3,3) = −R5(1− µ),

Λ(4,4) = R1 +R3 −R2,Λ(5,5) = −R1(1− µ) +Q2,

Λ(6,6) = −R3 +R4, Λ(7,7) = −R4,

Λ(8,8) =
−S2
l22
M̃ − S2P̃ + T2 +Q3,

Λ(8,9) = ÃS2, Λ(8,10) = B̃S2 + S2[|α̃|+ |β̃|],
Λ(9,9) = T5 −Q1, Λ(10,10) = −T5(1− η),

Λ(11,11) = T1 − T2 + T3,Λ(12,12) = −T1(1− η) +Q4,

Λ(13,13) = −T3 + T4, Λ(14,14) = −T4,
Λ(15,15) = −Q2,Λ(16,16) = −Q4.

Proof. : Now let us define Lyapunov Krasovskii functional as
follows:

V1(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t eT (x, t)S1e(x, t)

}
dx, (85)

V2(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t ēT (x, t)S2ē(x, t)

}
dx, (86)

V3(x, t) =

∫
Ω

{∫ t−τ1

t−τ(t)

eT (x, s)R1e(x, s)ds

+

∫ t

t−τ1
eT (x, s)R2e(x, s)ds

+

∫ t−τ1

t−τm
eT (x, s)R3e(x, s)ds

+

∫ t−τm

t−τ2
eT (x, s)R4e(x, s)ds

+

∫ t

t−τ(t)

fT (ē(x, s)R5f(ē(x, s))ds
}
dx, (87)

V4(x, t) =

∫
Ω

{∫ t−σ1

t−σ(t)

ēT (x, s)T1ē(x, s)ds

+

∫ t

t−σ1

ēT (x, s)T2ē(x, s)ds

+

∫ t−σ1

t−σm

ēT (x, s)T3ē(x, s)ds
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+

∫ t−σm

t−σ2

ēT (x, s)T4ē(x, s)ds

+

∫ t

t−σ(t)

gT (e(x, s)T5g(e(x, s))ds
}
dx,

(88)

Taking the time derivative of V(t) along the trajectories of
(83), it is evident that e(x, t),̄e(x, t) and ∂λe(x,t)

∂tλ
and∂

λē(x,t)
∂tλ

are continuous. Then, by Lemma (1) and Lemma (5), the
following holds:

V̇1(x, t) =

∫
Ω

S1
{−1
l21

eT (x, t)Me(x, t)− eT (x, t)Pe(x, t)

+ eT (x, t)Af(ē(x, t)) + eT (x, t)Bf(ē(x, t− τ(t)))

+ eT (x, t)[|α|+ |β|]f(ē(x, t− τ(t)))
}
dx, (89)

V̇2(x, t) =

∫
Ω

S2
{−1
l22

ēT (x, t)M̃ē(x, t)− ēT (x, t)P̃ ē(x, t)

+ ēT (x, t)Ãg(e(x, t)) + ēT (x, t)B̃g(e(x, t− σ(t)))

+ ēT (x, t)[|α̃|+ |β̃|]g(e(x, t− σ(t)))
}
dx, (90)

V̇3(x, t) =

∫
Ω

{
eT (x, t− τ1)[R1 −R2 +R3]e(x, t− τ1)

+ eT (x, t− τ(t))[−R1(1− µ)]e(x, t− τ(t))

+ eT (x, t)[R2]e(x, t) + eT (x, t− τm)[−R3 +R4]

× e(x, t− τm) + eT (x, t− τ2)[−R4]e(x, t− τ2)

+ fT (ē(x, t))[R5]f(ē(x, t)) + fT (ē(x, t− τ(t)))

× [−R5(1− µ)]f(ē(x, t− τ(t)))
}
dx, (91)

V̇4(x, t) =

∫
Ω

{
ēT (x, t− σ1)[T1 − T2 + T3 ]̄e(x, t− σ1)

+ ēT (x, t− σ(t))[−T1(1− η)]̄e(x, t− σ(t))

+ ēT (x, t)[T2 ]̄e(x, t) + ēT (x, t− σm)[−T3 + T4]

ē(x, t− σm) + ēT (x, t− σ2)[−T4 ]̄e(x, t− σ2)

+ gT (e(x, t))[T5]g(e(x, t)) + gT (e(x, t− σ(t)))

× [−T5(1− η)]g(e(x, t− σ(t)))
}
dx, (92)

From the Assumption 2, we have

0 ≤ eT (x, t)Q1e(x, t)− gT (e(x, t))Q1g(e(x, t)), (93)

0 ≤ eT (x, t− τ(t))Q2e(x, t− τ(t))

− gT (e(x, t− τ(t)))Q2g(e(x, t− τ(t))), (94)

0 ≤ ēT (x, t)Q3ē(x, t)− fT (ē(x, t))Q3f(ē(x, t)), (95)

0 ≤ ēT (x, t− σ(t))Q4ē(x, t− σ(t))

− fT (ē(x, t− σ(t)))Q4f(ē(x, t− σ(t))). (96)

V̇(x, t) ≤ θT4 Λθ4(t). (97)

where,

θ4 = [eT (x, t), fT (ē(x, t)), fT (ē(x, t− τ(t))),

eT (x, t− τ1), eT (x, t− τ(t)), eT (x, t− τm), eT (x, t− τ2),

ēT (x, t), gT (e(x, t)), gT (e(x, t− σ(t))), ēT (x, t− σ1),

ēT (x, t− σ(t)), ēT (x, t− σm), ēT (x, t− σ2), gT (e(x, t− τ(t)))

fT (ē(x, t− σ(t)))]T .

From condition (84), we have

V̇(x, t) ≤ 0. (98)

Therefore, we can conclude that the error system (83) has
a unique equilibrium point which is globally asymptotically
stable. As a result, the response system (2) with various
time delays is globally synchronized with and drive system
(1).This completes the proof.

Remark 5. Suppose, the diffusion terms are not appear
in system (37), then the system (37) can be remodified as
follows:

∂λe(x, t)

∂tλ
= −Pe(x, t) +Af(ē(x, t)) + Bf(ē(x, t− τ(t)))

+ [|α|+ |β|]f(ē(x, t− τ(t)))

+D
∫ t

−∞
K(t− s)f(ē(x, s))ds

+ [|γ|+ |δ|]
∫ t

−∞
K(t− s)f(ē(x, s))ds +Ke(x, t),

∂λē(x, t)

∂tλ
= −P̃ ē(x, t) + Ãg(e(x, t)) + B̃g(e(x, t− σ(t)))

+ [|α̃|+ |β̃|]g(e(x, t− σ(t)))

+ D̃
∫ t

−∞
K̃(t− s)g(e(x, s))ds

+ [|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)g(e(x, s))ds + K̄ē(x, t).

(99)

Theorem 6. Assume that for given positive scalars α, β,γ,
δ, α̃, β̃, γ̃, δ̃, τ21 , σ2

1 , η, µ the system (99) is globally
asymptotically stable, if there exist positive matrices S1 > 0,
S2 > 0, R6 > 0, R7 > 0, R8 > 0, R9 > 0, W5 > 0,
W6 > 0, H7 > 0, H8 > 0, positive diagonal matrices
Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0 with appropriate
dimension such that the following LMI holds:

(Ξi,j)14×14 < 0. (100)

where,

Ξ(1,1) = −S1P + S1K +R6 + τ1
2W5 +Q1,

Ξ(1,2) = S1A, Ξ(1,3) = S1B + S1[|α|+ |β|],
Ξ(1,4) = S1D + S1[|γ|+ |δ|], Ξ(2,2) = R8 +H7 −Q3,
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Ξ(3,3) = −R8(1− µ), Ξ(4,4) = −H7,

Ξ(5,5) = −R6(1− µ) +Q2,Ξ(6,6) = −W5,

Ξ(7,7) = −S2P̃ + S2K̄ +R7 + σ2
1W6 +Q3,Ξ(7,8) = S2Ã,

Ξ(7,9) = B̃S2 + S2[|α̃|+ |β̃|],
Ξ(7,10) = D̃S2 + S2[|γ̃|+ |δ̃|], Ξ(8,8) = R9 +H8 −Q1,

Ξ(9,9) = −R9(1− η),Ξ(10,10) = −H8,

Ξ(11,11) = −R7(1− η) +Q4,Ξ(12,12) = −W6,

Ξ(13,13) = −Q2,Ξ(14,14) = −Q4.

Proof. : The proof is similar to that in the proof of Theorem
2 by neglecting the diffusion terms in Theorem 2.

Remark 6. Suppose, the distributed delays are not appear
in system (37), then the system (37) can be remodified as
follows:

∂λe(x, t)

∂tλ
=M∆e(x, t)− P e(x, t) +Af(ē(x, t))

+ Bf(ē(x, t− τ(t))) + [|α|+ |β|]f(ē(x, t− τ(t)))

+Ke(x, t),
∂λē(x, t)

∂tλ
= M̃∆ē(x, t)− P̃ ē(x, t) + Ãg(e(x, t))

+ B̃g(e(x, t− σ(t))) + [|α̃|+ |β̃|]g(e(x, t− σ(t)))

+ K̄ē(x, t).
(101)

Theorem 7. Assume that for given positive scalars α, β, α̃,
β̃, τ21 , σ2

1 ,η, µ the system (101) is globally asymptotically
stable,if there exist positive matrices S1 > 0, S2 > 0,
R6 > 0 ,R7 > 0, R8 > 0, R9 > 0, positive diagonal
matrices Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0 with
appropriate dimension such that the following LMI holds:

(Γi,j)10×10 < 0. (102)

where

Γ(1,1) =
−MS1
l21

− S1P + S1K +R6 +Q1, Γ(1,2) = S1A,

Γ(1,3) = S1B + S1[|α|+ |β|],Γ(2,2) = R8 −Q3,

Γ(3,3) = −R8(1− µ),Γ(4,4) = −R6(1− µ) +Q2,

Γ(5,5) =
−M̃S2
l21

− S2P̃ + S2K̃ +R7 +Q3,Γ(5,6) = ÃS2,

Γ(5,7) = B̃S2 + S2[|α̃|+ |β̃|],Γ(6,6) = R9 −Q1,

Γ(7,7) = −R9(1− η), Γ(8,8) = −R7(1− η) +Q4,

Γ(9,9) = −Q2,Γ(10,10) = −Q4.

Proof. Now let us define Lyapunov Krasovskii functional as
follows:

V1(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t eT (x, t)S1e(x, t)

}
dx, (103)

V2(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t ēT (x, t)S2ē(x, t)

}
dx, (104)

V3(x, t) =

∫
Ω

{∫ t

t−τ(t)

eT (x, s)R6e(x, s)ds
}
dx, (105)

V4(x, t) =

∫
Ω

{∫ t

t−σ(t)

ēT (x, s)R7ē(x, s)ds
}
dx, (106)

V5(x, t) =

∫
Ω

{∫ t

t−τ(t)

fT (ē(x, s))R8f(ē(x, s))ds
}
dx,

(107)

V6(x, t) =

∫
Ω

{∫ t

t−σ(t)

gT (e(x, s))R9g(e(x, s))ds
}
dx,

(108)

Taking the time derivative of V(t) along the trajectories of
(101), it is evident that e(x, t),̄e(x, t) and ∂λe(x,t)

∂tλ
and∂

λē(x,t)
∂tλ

are continuous. Then, by Lemma (1) and Lemma (5), the
following holds:

V̇1(x, t) =

∫
Ω

S1
{−1
l21

eT (x, t)Me(x, t)− eT (x, t)Pe(x, t)

+ eT (x, t)Af(ē(x, t)) + eT (x, t)Bf(ē(x, t− τ(t)))

+ eT (x, t)[|α|+ |β|]f(ē(x, t− τ(t))) +Ke(x, t)
}
dx,

(109)

V̇2(x, t) =

∫
Ω

S2
{−1
l22

ēT (x, t)M̃ē(x, t)− ēT (x, t)P̃ ē(x, t)

+ ēT (x, t)Ãg(e(x, t)) + ēT (x, t)B̃g(e(x, t− σ(t)))

+ ēT (x, t)[|α̃|+ |β̃|]g(e(x, t− σ(t))) + K̄ē(x, t)
}
dx,

(110)

V̇3(x, t) =

∫
Ω

{
eT (x, t)R6e(x, t)− eT (x, t− τ(t))

×R6e(x, t− τ(t))(1− µ)
}
dx, (111)

V̇4(x, t) =

∫
Ω

{
ēT (x, t)R7ē(x, t)− ēT (x, t− σ(t))

×R7ē(x, t− σ(t))(1− η)
}
dx, (112)

V̇5(x, t) =

∫
Ω

{
fT (ē(x, t))R8f(ē(x, t))− fT (ē(x, t− τ(t)))

×R8f
T (ē(x, t− τ(t)))(1− µ)

}
dx, (113)

V̇6(x, t) =

∫
Ω

{
gT (e(x, t))R9g(e(x, t))− gT (e(x, t− σ(t)))

×R9g
T (e(x, t− σ(t)))(1− η)

}
dx, (114)
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From the Assumption 2, we have

0 ≤ eT (x, t)Q1e(x, t)− gT (e(x, t))Q1g(e(x, t)), (115)

0 ≤ eT (x, t− τ(t))Q2e(x, t− τ(t))

− gT (e(x, t− τ(t)))Q2g(e(x, t− τ(t))), (116)

0 ≤ ēT (x, t)Q3ē(x, t)− fT (ē(x, t))Q3f(ē(x, t)), (117)

0 ≤ēT (x, t− σ(t))Q4ē(x, t− σ(t))

− fT (ē(x, t− σ(t)))Q4f(ē(x, t− σ(t))). (118)

V̇(x, t) ≤ θT5 Γθ5(t). (119)

where,

θ5 = [eT (x, t), fT (ē(x, t)), fT (ē(x, t− τ(t))), eT (x, t− τ(t)),

ēT (x, t), gT (e(x, t)), gT (e(x, t− σ(t))), ēT (x, t− σ(t)),

gT (e(x, t− τ(t))), fT (ē(x, t− σ(t)))]T .

From condition (102), we have

V̇(x, t) ≤ 0. (120)

Therefore, we can conclude that the error system (101) has
a unique equilibrium point which is globally asymptotically
stable. As a result, the response system (2) with various
time delays is globally synchronized with and drive system
(1).This completes the proof.

Remark 7. Suppose, the discrete delays are not appear
in system (37), then the system (37) can be remodified as
follows:

∂λe(x, t)

∂tλ
=M∆e(x, t)− Pe(x, t) +Af(ē(x, t))

+D
∫ t

−∞
K(t− s)f(ē(x, s))ds

+ [|γ|+ |δ|]
∫ t

−∞
Kf(ē(x, s))ds +Ke(x, t),

∂λē(x, t)

∂tλ
= M̃∆ē(x, t)− P̃ ē(x, t) + Ãg(e(x, t))

+ D̃
∫ t

−∞
K̃(t− s)g(e(x, s))ds

+ [|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)g(e(x, s))ds + K̄ē(x, t).

(121)

Theorem 8. Assume that for given positive scalars γ, δ,
γ̃, δ̃, the system (121) is globally asymptotically stable, if
there exist positive matrices S1 > 0, S2 > 0 ,H7 > 0,

H8 > 0, positive diagonal matrices Q1 > 0, Q3 > 0, with
appropriate dimension such that the following LMI holds:

(ξi,j)6,6 < 0. (122)

where,

ξ(1,1) =
−MS1

l21
− S1P + S1K +Q1, ξ(1,2) = S1A,

ξ(1,3) = S1D + S1[|γ|+ |δ|], ξ(2,2) = H7 −Q3,

ξ(3,3) = −H7, ξ(4,4) =
−M̃S2

l22
− S2P̃ + S2K̄ +Q3,

ξ(4,5) = ÃS2, ξ(4,6) = D̃S2 + S2[|γ̃|+ |δ̃|],
ξ(5,5) = H8 −Q1, ξ(6,6) = −H8.

Proof. : Now let us define Lyapunov Krasovskii functional as
follows:

V1(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t S1eT (x, t)e(x, t)

}
dx, (123)

V2(x, t) =

∫
Ω

{1
2
RL
t0 I

1−λ
t ēT (x, t)S2ē(x, t)

}
dx, (124)

V3(x, t) =

∫
Ω

{ n∑
j=1

(h7)j

∫ ∞
0

Kj(θ)

×
∫ t

t−θ
f2j (ēj(fj(x, s)))dsdθ

}
dx, (125)

V4(x, t) =

∫
Ω

{ m∑
i=1

(h8)i

∫ ∞
0

K̃i(θ)

×
∫ t

t−θ
g2i (ei(gi(x, s)))dsdθ

}
dx. (126)

Taking the time derivative of V(t) along the trajectories of
(121), it is evident that e(x, t),̄e(x, t) and ∂λe(x,t)

∂tλ
and∂

λē(x,t)
∂tλ

are continuous. Then, by Lemma (1) and Lemma (5), the
following holds:

V̇1(x, t) =

∫
Ω

S1
{−1
l21

eT (x, t)Me(x, t)− eT (x, t)Pe(x, t)

+ eT (x, t)Af(ē(x, t)) + eT (x, t)D
∫ t

−∞
K(t− s)

f(ē(x, s))ds + eT (x, t)[|γ|+ |δ|]
∫ t

−∞

×K(t− s)f(ē(x, s))ds +Ke(x, t)
}
dx, (127)

V̇2(x, t) =

∫
Ω

S2
{−1
l2

2 ē
T (x, t)M̃ē(x, t)− ēT (x, t)P̃ ē(x, t)

+ ēT (x, t)Ãg(e(x, t)) + eT (x, t)D̃
∫ t

−∞
K̃(t− s)

× g(e(x, s))ds + ēT (x, t)[|γ̃|+ |δ̃|]
∫ t

−∞
K̃(t− s)
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× g(e(x, s))ds + K̄e(x, t)
}
dx, (128)

V̇3(x, t) =

∫
Ω

{
fT (ē(x, t))H7f(ē(x, t))

− (

∫ t

−∞
K(t− s)f(ē(x, s))ds)

TH7

× (

∫ t

−∞
K(t− s)f(ē(x, s))ds)

}
dx, (129)

V̇4(x, t) =

∫
Ω

{
gT (e(x, t))H8g(e(x, t))

− (

∫ t

−∞
K̃(t− s)g(ē(x, s))ds)

TH8

× (

∫ t

−∞
K̃(t− s)g(e(x, s))ds)

}
dx (130)

From the Assumption 2, we have

0 ≤ eT (x, t)Q1e(x, t)− gT (e(x, t))Q1g(e(x, t)), (131)

0 ≤ ēT (x, t)Q3ē(x, t)− fT (ē(x, t))Q3f(ē(x, t)) ≤ 0. (132)

V̇(t) ≤ θT6 ξθ6(t). (133)

where,

θ6 = [e(x, t), f(ē(x, t)),

∫ t

−∞
K(t− s)f(ē(x, s))ds,

ē(x, t), g(e(x, t)),

∫ t

−∞
K̃(t− s)g(e(x, s))ds]T .

V̇ (x, t) ≤ 0. (134)

Therefore, we can conclude that the error system (121) has
a unique equilibrium point which is globally asymptotically
stable. As a result, the response system (2) with various
time delays is globally synchronized with and drive system
(1).This completes the proof.

III. NUMERICAL EXAMPLE
In this section, to verify and demonstrate the effectiveness of
the derived method, we consider two numerical examples.

Example III.1. Consider the master system (1) and the slave
system (2) of fuzzy BAM NNs with the following parameters:

M =


0.79 0 0 0 0
0 0.79 0 0 0
0 0 0.79 0 0
0 0 0 0.79 0
0 0 0 0 0.79



P =


0.79 0.98 0.78 0.90 0.56
0.45 0.79 0.89 0.43 0.87
0.87 0.45 0.79 0.98 0.67
0.09 0.87 0.88 0.79 0.98
0.90 0.67 0.65 0.76 0.79



A =


0.89 0.09 0.56 0.89 0.09
0.98 0.56 0.34 0.90 0.98
0.67 0.77 0.23 0.45 0.34
0.78 0.90 0.43 0.98 0.99
0.76 0.87 0.33 0.23 0.21



B =


0.76 0.99 0.46 0.29 0.09
0.38 0.58 0.37 0.99 0.95
0.69 0.79 0.28 0.46 0.35
0.74 0.93 0.45 0.92 0.96
0.75 0.88 0.39 0.24 0.22



D =


0.89 0.39 0.78 0.23 0.19
0.48 0.68 0.47 0.19 0.45
0.64 0.59 0.18 0.36 0.45
0.79 0.53 0.75 0.82 0.96
0.35 0.28 0.49 0.54 0.62



M̃ =


0.88 0 0 0 0
0 0.88 0 0 0
0 0 0.88 0 0
0 0 0 0.88 0
0 0 0 0 0.88



P̃ =


0.88 0.87 0.45 0.34 0.54
0.34 0.88 0.34 0.23 0.45
0.23 0.12 0.88 0.43 0.55
0.23 0.45 0.23 0.88 0.22
0.22 0.34 0.45 0.56 0.88



Ã =


0.99 0.29 0.16 2.89 3.09
6.98 7.56 8.34 9.90 1.98
9.67 8.77 1.23 2.45 3.34
8.78 9.90 8.43 8.98 5.99
0.77 0.67 0.36 0.28 0.27



B̃ =


0.78 0.98 0.09 2.76 3.89
6.98 7.89 7.34 1.90 2.98
5.67 6.77 2.23 3.45 4.34
6.78 7.90 0.43 9.98 3.99
1.77 2.67 3.36 4.28 5.27



D̃ =


0.78 0.98 0.09 2.76 3.89
6.98 7.89 7.34 1.90 2.98
5.67 6.77 2.23 3.45 4.34
6.78 7.90 0.43 9.98 3.99
1.77 2.67 3.36 4.28 5.27


(135)

Let us consider gi(ui) = 1
2 (|ui − 1| − |ui − 1|), i = 1, 2, ..,m,

fj(ηj) = 1
2 (|ηj − 1| − |ηj − 1|), j = 1, 2, .., n, which satisfy

the Assumption 2 ,we get F−j = −2,F+
j = 2,G−i =

−0.7,G+
i = 0.7, τ1 = 0.89, τ1m = 0.87, τm2 =

0.88, µ = 0.67, α = 0.76, β = 0.56, γ = 0.46, δ =
0.56, σ1 = 0.98, σ2m = 0.96, γ̃ = 0.87, δ̃ = 0.67, σ̃2

1m =
0.876, l2 = 0.76, η = 0.98, α̃ = 0.87, β̃ = 0.98.

By using the Matlab LMI solver to solve the LMIs 6 in
Theorem 1, it can be found that the LMIs are feasible and the
matrices are
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W3 =


13.8329 0.0093 0.0071 −0.0130 0.0170
0.0093 13.8176 0.0181 0.0105 0.0100
0.0071 0.0181 13.7464 0.0500 0.0062
−0.0130 0.0105 0.0500 13.8024 0.0037
0.0170 0.0100 0.0062 0.0037 13.7999



R2 =


18.3071 0.0033 0.0006 −0.0050 0.0042
0.0033 18.3121 0.0065 0.0031 0.0035
0.0006 0.0065 18.3359 0.0143 0.0003
−0.0050 0.0031 0.0143 18.3183 −0.0005
0.0042 0.0035 0.0003 −0.0005 18.3174



W1 =


2.6847 0.0004 0.0001 −0.0005 0.0005
0.0004 2.6852 0.0007 0.0004 0.0004
0.0001 0.0007 2.6879 0.0016 0.0001
−0.0005 0.0004 0.0016 2.6859 −0.0000
0.0005 0.0004 0.0001 −0.0000 2.6858



H4 =


2.8628 −0.0025 0.0047 −0.0076 0.0072
−0.0025 2.8626 0.0042 0.0005 −0.0016
0.0047 0.0042 2.8932 0.0203 0.0103
−0.0076 0.0005 0.0203 2.8623 0.0047
0.0072 −0.0016 0.0103 0.0047 2.8681



R1 =


8.2921 0.0019 0.0002 −0.0029 0.0023
0.0019 8.2949 0.0037 0.0017 0.0020
0.0002 0.0037 8.3084 0.0079 0.0000
−0.0029 0.0017 0.0079 8.2985 −0.0004
0.0023 0.0020 0.0000 −0.0004 8.2979



R3 =


5.1062 0.0007 0.0002 −0.0011 0.0010
0.0007 5.1074 0.0014 0.0007 0.0008
0.0002 0.0014 5.1127 0.0033 0.0001
−0.0011 0.0007 0.0033 5.1087 −0.0001
0.0010 0.0008 0.0001 −0.0001 5.1086



W2 =


2.7063 0.0004 0.0001 −0.0005 0.0005
0.0004 2.7069 0.0007 0.0004 0.0004
0.0001 0.0007 2.7095 0.0016 0.0001
−0.0005 0.0004 0.0016 2.7075 −0.0000
0.0005 0.0004 0.0001 −0.0000 2.7075



R4 =


2.5529 0.0004 0.0001 −0.0006 0.0005
0.0004 2.5534 0.0007 0.0004 0.0004
0.0001 0.0007 2.5561 0.0016 0.0001
−0.0006 0.0004 0.0016 2.5541 −0.0000
0.0005 0.0004 0.0001 −0.0000 2.5541



S1 =


0.1808 −0.0247 −0.0973 −0.0656 0.0419
−0.0247 0.1726 −0.0401 −0.0018 −0.0293
−0.0973 −0.0401 0.3600 0.0439 −0.0667
−0.0656 −0.0018 0.0439 0.1738 −0.0552
0.0419 −0.0293 −0.0667 −0.0552 0.2014



R5 =


−4.0984 −0.0059 0.0147 0.0119 −0.0099
−0.0059 −4.0962 −0.0045 −0.0111 −0.0098
0.0147 −0.0045 −4.1294 −0.0169 0.0095
0.0119 −0.0111 −0.0169 −4.1031 0.0015
−0.0099 −0.0098 0.0095 0.0015 −4.0949



Q2 =


1.3682 0 0 0 0

0 1.3682 0 0 0
0 0 1.3682 0 0
0 0 0 1.3682 0
0 0 0 0 1.3682



Q3 =


0.8072 0 0 0 0

0 0.8072 0 0 0
0 0 0.8072 0 0
0 0 0 0.8072 0
0 0 0 0 0.8072



Q4 =


0.7928 0 0 0 0

0 0.7928 0 0 0
0 0 0.7928 0 0
0 0 0 0.7928 0
0 0 0 0 0.7928



S2 =


0.0312 −0.0262 0.0054 −0.0009 −0.0035
−0.0262 0.0282 −0.0099 −0.0022 0.0032
0.0054 −0.0099 0.0087 0.0026 −0.0022
−0.0009 −0.0022 0.0026 0.0036 −0.0019
−0.0035 0.0032 −0.0022 −0.0019 0.0052



T2 =


13.0830 −0.0154 −0.0099 −0.0087 −0.0061
−0.0154 13.0819 −0.0081 0.0030 0.0048
−0.0099 −0.0081 13.0757 −0.0042 −0.0122
−0.0087 0.0030 −0.0042 13.0731 −0.0086
−0.0061 0.0048 −0.0122 −0.0086 13.0624



Z1 =


−9.4849 −0.0070 −0.0021 −0.0027 −0.0021
−0.0070 −9.4846 −0.0035 0.0009 0.0017
−0.0021 −0.0035 −9.4887 −0.0011 −0.0035
−0.0027 0.0009 −0.0011 −9.4901 −0.0025
−0.0021 0.0017 −0.0035 −0.0025 −9.4928



Z3 =


−9.1113 −0.0062 −0.0019 −0.0025 −0.0019
−0.0062 −9.1111 −0.0031 0.0008 0.0015
−0.0019 −0.0031 −9.1147 −0.0010 −0.0031
−0.0025 0.0008 −0.0010 −9.1159 −0.0022
−0.0019 0.0015 −0.0031 −0.0022 −9.1185



Q1 =


−5.4902 0 0 0 0

0 −5.4902 0 0 0
0 0 −5.4902 0 0
0 0 0 −5.4902 0
0 0 0 0 −5.4902



H5 =


−1.8291 0.0131 0.0171 0.0270 0.0362
0.0131 −1.7959 0.0357 0.0227 0.0201
0.0171 0.0357 −1.6558 0.1049 0.0157
0.0270 0.0227 0.1049 −1.7725 0.0091
0.0362 0.0201 0.0157 0.0091 −1.7638



T1 =


12.1970 −0.0082 −0.0070 −0.0054 −0.0037
−0.0082 12.1958 −0.0044 0.0019 0.0029
−0.0070 −0.0044 12.1934 −0.0028 −0.0079
−0.0054 0.0019 −0.0028 12.1922 −0.0056
−0.0037 0.0029 −0.0079 −0.0056 12.1851
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T5 =


5.2870 −0.0036 0.0006 −0.0028 0.0011
−0.0036 5.2895 0.0017 0.0017 0.0015
0.0006 0.0017 5.2943 0.0053 0.0003
−0.0028 0.0017 0.0053 5.2868 −0.0004
0.0011 0.0015 0.0003 −0.0004 5.2871



T3 =


5.6752 −0.0017 −0.0010 −0.0009 −0.0006
−0.0017 5.6751 −0.0009 0.0003 0.0005
−0.0010 −0.0009 5.6744 −0.0004 −0.0012
−0.0009 0.0003 −0.0004 5.6741 −0.0009
−0.0006 0.0005 −0.0012 −0.0009 5.6730



Z2 =


−8.7083 −0.0055 −0.0017 −0.0022 −0.0017
−0.0055 −8.7081 −0.0027 0.0007 0.0014
−0.0017 −0.0027 −8.7112 −0.0009 −0.0028
−0.0022 0.0007 −0.0009 −8.7123 −0.0020
−0.0017 0.0014 −0.0028 −0.0020 −8.7146



T4 =


2.8373 −0.0008 −0.0005 −0.0004 −0.0003
−0.0008 2.8372 −0.0004 0.0001 0.0002
−0.0005 −0.0004 2.8368 −0.0002 −0.0006
−0.0004 0.0001 −0.0002 2.8367 −0.0004
−0.0003 0.0002 −0.0006 −0.0004 2.8362



R =


−5.4902 0.0039 0.0093 −0.0151 0.0187
0.0039 −5.4724 0.0183 0.0120 0.0113
0.0093 0.0183 −5.3989 0.0564 0.0078
−0.0151 0.0120 0.0564 −5.4626 0.0042
0.0187 0.0113 0.0078 0.0042 −5.4582



L =


0.8072 −0.0009 0.0107 0.0051 0.0030
−0.0009 0.8086 −0.0010 −0.0042 −0.0019
0.0107 −0.0010 0.8055 0.0047 0.0088
0.0051 −0.0042 0.0047 0.8035 0.0057
0.0030 −0.0019 0.0088 0.0057 0.8132



By Theorem (1), the error system (3), is asymptotically
synchronized.

Example III.2. Consider the master system 1 and the slave
system 2 of fuzzy BAM NNs with the following parameters:

M =


0.89 0 0 0 0
0 0.89 0 0 0
0 0 0.89 0 0
0 0 0 0.89 0
0 0 0 0 0.89



P =


0.76 0.89 0.98 0.56 0.98
0.76 9.09 0.98 0.87 0.34
0.12 0.34 0.87 9.07 0.87
0.77 0.23 0.34 0.45 0.67
0.34 0.45 0.87 0.98 0.68



A =


0.09 0.29 0.36 0.29 0.49
0.78 0.86 0.94 0.10 0.28
0.37 0.47 0.53 0.65 0.94
0.38 0.50 0.23 0.48 0.69
0.26 0.37 0.53 0.29 0.11



B =


0.62 0.89 0.16 0.39 0.19
0.48 0.68 0.37 0.49 0.35
0.61 0.79 0.28 0.26 0.25
0.44 0.53 0.45 0.62 0.56
0.25 0.38 0.39 0.14 0.92
0.57 0.66 0.77 0.89 0.92



D =


0.09 0.29 0.58 0.13 0.39
0.48 0.66 0.41 0.39 0.95
0.24 0.59 0.88 0.26 0.55
0.39 0.55 0.25 0.86 0.76
0.15 0.68 0.79 0.34 0.72



Ã1 =


0.99 0 0 0 0
0 0.99 0 0 0
0 0 0.99 0 0
0 0 0 0.99 0
0 0 0 0 0.99



P1 =


0.66 0.09 0.98 0.89 0.45
0.223 9.56 0.88 0.57 0.94
0.72 0.78 0.45 9.09 0.23
0.12 0.63 0.24 0.65 0.17
0.94 0.67 0.09 0.67 0.98



A1 =


0.12 0.78 0.12 2.12 3.67
6.87 7.56 8.59 9.90 1.98
9.34 8.46 1.12 2.56 3.21
8.35 9.98 8.57 8.56 5.34
0.56 0.47 0.34 0.78 0.45



B1 =


0.12 0.23 0.34 2.45 3.56
6.12 7.23 7.45 1.54 2.56
5.34 6.55 2.66 3.23 3.55
6.78 9.90 9.43 8.98 4.99
2.77 3.67 4.36 5.28 7.27



D =


0.23 0.44 0.56 2.67 3.87
6.34 7.45 7.34 1.23 2.45
5.23 6.45 2.56 3.76 3.45
6.56 9.45 9.56 8.56 4.45
2.27 3.37 4.46 5.58 7.67



Let us consider gi(ui) = 1
2 (|ui − 1| − |ui − 1|), i = 1, 2, ..,m,

fj(ηj) = 1
2 (|ηj − 1| − |ηj − 1|), j = 1, 2, .., n, which satisfy

the Assumption 2 ,we get F−j = −9,F+
j = 7,G−i =

−0.79,G+
i = 0.69, τ1l = 0.89, l1 = 0.76, l2 = 0.56,

α = 0.98, β = 0.87, µ = 0.98, γ = 0.34, δ = 0.55,
α̃ = 0.78, β̃ = 0.46, γ̃ = 0.87, δ̃ = 0.34, η = 0.87,
σ1 = 0.89.

By using the Matlab LMI solver to solve the LMIs 38 in
Theorem 2, it can be found that the LMIs are feasible and the
matrices are

R6 =


−6.1553 −0.0004 0.0000 0.0001 0.0001
−0.0004 −6.1515 −0.0010 −0.0005 −0.0004
0.0000 −0.0010 −6.1537 0.0004 0.0001
0.0001 −0.0005 0.0004 −6.1554 0.0001
0.0001 −0.0004 0.0001 0.0001 −6.1554
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Q1 =


10.3451 0 0 0 0

0 10.3451 0 0 0
0 0 10.3451 0 0
0 0 0 10.3451 0
0 0 0 0 10.3451



Q3 =


29.0385 0 0 0 0

0 29.0385 0 0 0
0 0 29.0385 0 0
0 0 0 29.0385 0
0 0 0 0 29.0385



Q4 =


1.1072 0 0 0 0

0 1.1072 0 0 0
0 0 1.1072 0 0
0 0 0 1.1072 0
0 0 0 0 1.1072



R8 =


26.8541 −0.0000 0.0000 0.0000 0.0000
−0.0000 26.8541 −0.0000 −0.0000 0.0000
0.0000 −0.0000 26.8541 0.0000 −0.0000
0.0000 −0.0000 0.0000 26.8541 −0.0000
0.0000 0.0000 −0.0000 −0.0000 26.8541



H7 =


1.0921 −0.0000 0.0000 0.0000 0.0000
−0.0000 1.0921 −0.0000 −0.0000 0.0000
0.0000 −0.0000 1.0921 0.0000 −0.0000
0.0000 −0.0000 0.0000 1.0921 −0.0000
0.0000 0.0000 −0.0000 −0.0000 1.0921



W6 =


1.0979 0.0000 0.0000 0.0000 0.0000
0.0000 1.0979 0.0000 0.0000 0.0000
0.0000 0.0000 1.0979 0.0000 0.0000
0.0000 −0.0000 0.0000 1.0979 0.0000
−0.0000 0.0000 0.0000 0.0000 1.0979



R9 =


8.1556 0.0000 −0.0000 0.0000 0.0000
−0.0000 8.1556 0.0000 0.0000 0.0000
0.0000 0.0000 8.1556 0.0000 0.0000
0.0000 0.0000 0.0000 8.1556 0.0000
0.0000 0.0000 0.0000 0.0000 8.1556



H8 =


1.0946 −0.0000 0.0000 0.0000 0.0000
−0.0000 1.0946 0.0000 0.0000 0.0000
0.0000 0.0000 1.0946 0.0000 0.0000
0.0000 0.0000 0.0000 1.0946 0.0000
0.0000 0.0000 0.0000 0.0000 1.0946



W5 =


1.0970 0.0000 0.0000 0.0000 0.0000
0.0000 1.0970 0.0000 0.0000 0.0000
0.0000 0.0000 1.0970 0.0000 0.0000
0.0000 0.0000 0.0000 1.0970 0.0000
0.0000 0.0000 0.0000 0.0000 1.0970



R7 =


−0.0709 −0.0000 0.0000 0.0000 0.0000
−0.0000 −0.0709 −0.0000 −0.0000 0.0000
0.0000 −0.0000 −0.0709 0.0000 −0.0000
0.0000 −0.0000 0.0000 −0.0709 −0.0000
0.0000 0.0000 −0.0000 −0.0000 −0.0709



V1 =


6.1553 0.0004 −0.0000 −0.0001 −0.0001
0.0004 6.1515 0.0010 0.0005 0.0004
−0.0000 0.0010 6.1537 −0.0004 −0.0001
−0.0001 0.0005 −0.0004 6.1554 −0.0001
−0.0001 0.0004 −0.0001 −0.0001 6.1554



V2 =


−1.5119 0.0000 0.0000 0.0000 0.0000
0.0000 −1.5119 0.0000 0.0000 0.0000
0.0000 0.0000 −1.5119 0.0000 0.0000
0.0000 0.0000 0.0000 −1.5119 0.0000
0.0000 0.0000 0.0000 0.0000 −1.5119



Q2 =


−1.0176 0 0 0 0

0 −1.0176 0 0 0
0 0 −1.0176 0 0
0 0 0 −1.0176 0
0 0 0 0 −1.0176


S1 = 103∗

0.2139 −0.1951 0.0073 0.0047 0.0728
−0.1951 0.8457 −0.2344 −0.1946 −0.1258
0.0073 −0.2344 0.1124 0.3653 −0.0061
0.0047 −0.1946 0.3653 0.0478 −0.0133
0.0728 −0.1258 −0.0061 −0.0133 0.1171


S2 = 106∗

0.0261 −0.0169 0.0060 −0.0020 0.0064
−0.0169 0.1229 −0.0232 −0.0191 0.0017
0.0060 −0.0232 0.0033 0.0607 −0.0093
−0.0020 −0.0191 0.0607 0.0020 −0.0036
0.0064 0.0017 −0.0093 −0.0036 0.0219


(136)

Thus, the controller gain matrices K1 and K2 can be as
follows:

K1 = 104∗
4.2372 0.9191 0.3280 0.3783 −1.5878
0.9195 1.4748 0.7204 0.7259 1.1338
0.3280 0.7203 0.1329 2.1135 0.8169
0.3783 0.7258 2.1130 −0.1814 0.6349
−1.5878 1.1335 0.8168 0.6348 7.5789


K2 = 108∗

−1.1483 −0.1597 −0.0726 0.1079 0.3332
−0.1597 −0.2595 −0.0832 −0.0757 0.0187
−0.0726 −0.0832 −0.0168 −0.4563 −0.0540
0.1079 −0.0757 −0.4563 −0.0499 −0.2276
0.3332 0.0187 −0.0540 −0.2276 −1.3353


(137)

By Theorem (2), the error system (37), is asymptotically
synchronized.

IV. CONCLUSION
In this paper, we have dealt with the synchronization of frac-
tional order fuzzy BAM neural networks with time varying
delays and reaction diffusion terms have been investigated.
By constructing the novel Lyapunov-Krasovskii functional
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having the double integral terms, we utilized Jensens in-
equality techniques and LMI approach, we derived sufficient
conditions to guarantee the global asymptotical stability of
the error dynamics of the considered fuzzy BAMNNs. The
obtained results indicate that the synchronization behavior
of fuzzy BAMNNs is very sensitive to the initial condition.
Moreover, the controller gain matrices can be obtained by
solving the LMIs. Finally, illustrative numerical results have
been provided to verify the correctness and effectiveness of
the obtained results.
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