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ABSTRACT In this paper, we focus on the global stability analysis with respect to dynamical delayed
neural network (NN) models that contain parameter uncertainties. Many investigations on the sufficient
conditions utilizing different upper bounds for the norm of interconnection matrices pertaining to the global
asymptotic robust stability of delayed NN models have been conducted. In this study, a new upper bound of
the norm of connection weight matrices is derived for the delayed NN models under parameter uncertainties.
The key focus is on how the new upper bound is able to yield minimum result with respects to some of the
existing upper bounds. We demonstrate that the new upper bound can lead to some new sufficient conditions
with respect to the global asymptotic robust stability of equilibrium point of the delayed NN models. The
slope bounded activation functions and Lyapunov-Krasovskii functionals are employed for formulating
the sufficient conditions of the NN equilibrium point. Moreover, the derived sufficient conditions are
independent on the time delay parameter. Numerical examples are provided, and the outcomes obtained
are compared with those of the existing results subject to different network parameters.

INDEX TERMS Dynamical delayed neural networks, slope bounded activation function, interval matrices,
parameter uncertainties, global robust stability.

I. INTRODUCTION

IN recent years, the role of neural networks (NNs) has
been significantly developed due to their successful appli-

cations to different areas. Indeed, many different types of NN
models, e.g. Hopfield, Cohen-Grossberg, Bidirectional Asso-
ciative, and cellular NN models, have been utilized to solve
various engineering problems pertaining to combinatorial op-
timization, pattern recognition, image and signal processing,
etc. Amazon, Epinions, Facebook and Twitter are running
in the field of data science and network science systems
in [1]–[4]. However, a common challenge of NN hardware
design and implementation is that it is difficult to determine
appropriate and accurate network parameters. The issue of
parameter fluctuation of NN implementation on VLSI chips
is also unavoidable. The NN design process includes nu-
merous estimation errors in the measurement of important
data such as synaptic interconnection weights, fire rates of

neurons, and signal transmission delays. Nevertheless, it is
possible to examine the range of network parameters even
in the presence of incomplete information. In this regard, by
using the interval theory of NN connection weight matrices,
we can identify the upper bounds with respect to the norm
of interval matrices. Recently, a number of studies on the
derivation of the upper bounds of the norm of connection
weight matrices have been conducted [5]–[10]. Specifically,
the sufficient conditions pertaining to the NN global robust
stability have been derived.

As reported in the literature, different kinds of NN stability
analysis, such as global asymptotically robust stable (GARS),
exponential stability and complete stability with time de-
lays have been examined. [7]–[14]. The Lyapunov stability
theory, linear matrix inequalities, non-smooth analysis, M-
matrix theory have been used in the stability analysis of
delayed NN models. In this respect, the stability properties
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of equilibrium point play a vital role in dynamical delayed
NN models. In other words, it is important to examine and
understand the global asymptotic robust stability of dynam-
ical delayed NN models under parameter uncertainties, as
reported in [15]–[28]. It is well-known that a delayed NN
model usually includes a delay parameter in the state of a
neuron. However, it is very interesting to add a delay to the
neuron state and study the effects. Many different types of
time delays can be used, e.g. constant time delay, discrete
time delay, distributed time delay, neutral time delay, leakage
time delay etc. In this paper, we concentrate on constant time
delay NN models. We cover mathematical modelling of NN
dynamics with time delays, in which the results have a wide
range of practical engineering problems [29]–[32].

Motivated by the above account, we specifically examine
the global robust stability of dynamical time-delayed NN
models in this study. While several upper bounds with respect
to the connection weight matrices of dynamical delayed NNs
have been derived, we aim to obtain a new upper bound for
the connection weight matrices of this class of NN models.
Our study is significant because different upper bounds play
a major role in the determination of the sufficient conditions
pertaining to the global robust stability of dynamical delayed
NN models. Through this new upper bound, we are able
to formulate the sufficient conditions with respect to the
global asymptotic robust stability of delayed NN models.
In our analysis, the activation functions are considered as
unbounded, but as slope bounded functions.

This paper is organized in the following manner. The
dynamical time-delayed NN model with interval technique of
network parameters is described. For the norm of connection
weight matrices, we derive a new upper bound in section II.
Also we give some new sufficient conditions with respect to
the global asymptotic stability using the new upper bound in
section III. We also restate some existing sufficient conditions
with respect to the stability of NN models in section IV. A
comparative study of numerical examples to illustrate the
effectiveness of our results over previously published results
of delayed NN models is presented in section V. Conclusions
are given in section VI.

A. NOTATIONS:
We utilize the following notations for the norm of vec-
tors and matrices. Let w = (w1, w2, · · · , wn)T ∈ Rn.
The most common vector norms are used, i.e., ‖ w ‖1
, ‖ w ‖2, ‖ w ‖∞ have the corresponding definitions of
‖ w ‖1=

∑n
i=1 | wi |, ‖ w ‖2=

√∑n
i=1 w

2
i and

‖ w ‖∞= max1≤i≤n | wi |. Suppose R = (rij)n×n,
the following are the definitions of ‖ R ‖1,‖ R ‖2 and
‖ R ‖∞. ‖ R ‖1= max1≤j≤n

∑n
i=1 | rij |, ‖ R ‖2=

[λmax(RTR)]1/2 and ‖ R ‖∞= max1≤i≤n
∑n
j=1 | rij |.

For any vector w = (w1, w2, · · · , wn)T , | w | defined
as | w |= (| w1 |, | w2 |, . . . , | wn |)T . For any
matrix R = (rij)n×n with real entries | R | is defined as
| R |= (| rij |)n×n. In addition, given matrixR, its minimum
and maximum eigenvalues are denoted by λmin(R) and

λmax(R), respectively. A positive definite (or semi-definite)
symmetric matrix of R = (rij)n×n exists if wTRw > 0(≥
0), for any real vector w = (w1, w2, · · · , wn)T . Given two
positive definite matrices H = (hij)n×n and R = (rij)n×n,
H < R indicates wTHw < wTRw for any real vector
w = (w1, w2, · · · , wn)T .

II. PRELIMINARIES
The considered dynamical time delayed NN model is repre-
sented by a set of differential equations:

dwi(t)

dt
=− ciwi(t) +

n∑
j=i

dijfj(wj(t))

+
n∑
j=i

eijfj(wj(t− τ)) + Ji,

i = 1, 2, · · · , n, (1)

where the total number of neurons is n,the ith neuron state
of the vector at time t is wi(t). In addition, eij and dij are
the connection weights between the ith and jth neurons with
and without time delays, respectively; ci indicates the rate
of charge for the ith neuron; fj(·) denotes the activation
functions at time t and t − τ , with τ denotes the constant
time delay. Besides that, Ji represents the vector with con-
stant input between the neurons. The matrix vector form of
equation (1) is as follows:

ẇ(t) = −Cw(t) + Df(w(t)) + Ef(w(t− τ) + J, (2)

where w(t) = [w1(t), w2(t), · · · , wn(t)]T ∈ Rn, C =
diag(ci > 0), E = (eij) ∈ Rn×n, D = (dij) ∈ Rn×n,
f(w(t)) = [f1(w1(t)), f2(w2(t)), · · · , fn(wn(t))]T ∈ Rn
and J = [J1, J2, · · · , Jn]T ∈ Rn. The most common
approach for handling the delayed NN model is to make the
connection weight matrices D = (dij)n×n, E = (eij)n×n
and C = diag(ci > 0) in an interval, i.e.,

CI = {C = diag(ci) : 0 ≺ C � C � C ,
ie., 0 < ci ≤ ci ≤ ci, i = 1, 2, · · · , n}
DI = {D = (dij) : D � D � D, ie., dij ≤ dij ≤ dij , }
EI = {E = (eij) : E � E � E , ie., eij ≤ eij ≤ eij ,
i, j = 1, 2, · · · , n}

(3)

By using equation (3), we can define matrices D∗, D∗, E∗

and E∗:

D∗ =
1

2
(D + D), D∗ =

1

2
(D − D). (4)

E∗ =
1

2
(E + E), E∗ =

1

2
(E − E). (5)

Definition 1. The NN model given in (2) with the network pa-
rameters satisfying (3) is globally robust stable if the unique
equilibrium point w∗(t) = [w∗1(t), w∗2(t), · · · , w∗n(t)]T ∈
Rn of the model is globally asymptotically stable for all
C ∈ CI ,D ∈ DI ,E ∈ EI .
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Definition 2. A slope bounded function has some positive
constants ki such that

0 ≤ fi(w)− fi(v)

w − v
≤ ki, ∀w, v ∈ R w 6= v, i = 1, 2, · · · , n.

A slope-bounded activation function of fi is used in this
study, in which the class of functions is denoted by f ∈ k, .
Note that it is not necessary for this class of functions to
be monotonically increasing, differentiable, and bounded.
The upper bounds for the norm of the connection weight
matrices D = (dij) and E = (eij) of model (2) play a
vital role for finding the sufficient conditions with respect
to the global robust stability analysis. Given matrices D and
E , four different upper bounds of their norm have been dis-
cussed in the literature. So, we first restate the four existing
upper bounds with respect to the norm of interval connection
weight matrices D and E .

Lemma 1. [7]– [10] A matrix E is defined by E ∈ EI as
in equation (3), E∗ and E∗ are the matrices defined as in
equation (5).

Let T1(E) =
√
‖| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET∗ E∗ ‖2,

T2(E) =‖ E∗ ‖2 + ‖ E∗ ‖2,
T3(E) =

√
‖ E∗ ‖22 + ‖ E∗ ‖22 +2 ‖ ET∗ | E∗ |‖ and

T4(E) =‖ Ê ‖2, where Ê = (êij) with
êij = max(| eij |, | eij |). Then, ‖ E ‖2≤ Ti(E), where
i = 1, 2, 3, 4.

Lemma 2. [25] Suppose E ∈ EI is any matrix defined as in
equation (3) , E∗ and E∗ are defined as in equation (5), then

‖ E ‖2 ≤ T5(E),

where T5(E) =√
λmax(| (E∗)TE∗ | +ET∗ | E∗ | + | (E∗)T | E∗ + ET∗ E∗).

Our major contribution of our current study is to derive
a new upper bound with respect to the norm of matrices D
and E . Specifically, we formulate the new upper bound with
respect to the norm of interval connection weight matrices D
and E in the following form.

Lemma 3. Suppose E ∈ EI is any matrix defined as in
equation (3), E∗ and E∗ are the matrices defined as in
equation (5), then

‖ E ‖2 ≤ T6(E),

where

T6(E) =
√
λmax(| (E∗)TE∗ | +2ET∗ | E∗ | +ET∗ E∗).

Proof. If E ∈ EI , then eij can be written as follows:

eij =
1

2
(eij + eij) + tij

1

2
(eij − eij), −1 ≤ tij ≤ 1,

(or)

E =(eij) =
1

2
(E + E) + ∆

1

2
(E − E) = E∗ + ∆E∗,

where ∆ = (tij)n×n, i, j = 1, 2, · · · , n. For any vector
w(t) = [w1(t), w2(t), · · · , wn(t)]T ∈ Rn, we can write

wTETEw =wT (E∗ + ∆E∗)T (E∗ + ∆E∗)w

=wT (E∗)TE∗w + wT (E∗)T∆E∗w

+ wTET∗ ∆TE∗w + wTET∗ ∆T∆E∗w

=wT (E∗)TE∗w + 2wTET∗ ∆TE∗w

+ wTET∗ ∆T∆E∗w

≤ | wT || (E∗)TE∗ || w |
+ 2 | wT || ET∗ ∆T || E∗ || w |
+ | wT || ET∗ ∆T || ∆E∗ || w | .

Since | ∆E∗ | ≤ E∗, we have

| wT || ET∗ ∆T || E∗ || w | ≤ | wT | ET∗ | E∗ || w |

and

| wT || ET∗ ∆T || ∆E∗ || w | ≤ | wT | ET∗ E∗ | w | .

Therefore,

wTETEw ≤ |wT ||(E∗)TE∗||w|+ 2 | wT | ET∗ | E∗ || w |
+ | wT | ET∗ E∗ | w |

= | wT |
(
| (E∗)TE∗ | +2ET∗ | E∗ | +ET∗ E∗

)
| w |

≤λmax(| (E∗)TE∗ | +2ET∗ | E∗ | +ET∗ E∗)wTw

|| E ||22 ≤λmax(| (E∗)TE∗ | +2ET∗ | E∗ | +ET∗ E∗)

|| E ||2 ≤
√
λmax(| (E∗)TE∗ | +2ET∗ | E∗ | +ET∗ E∗).

(or)

‖ E ‖2 ≤ T6(E).

Hence the proof.

Remark 1. The results in Lemma 1-3 always hold for the
connection weight matrix D, i.e., ‖ D ‖2≤ Ti(D), i =
1, 2, 3, 4, 5, 6.

Lemma 4. For any matrix E ∈ EI , T5(E) ≤ T1(E) and
T6(E) ≤ T1(E).

Proof. Since

| (E∗)TE∗ | +ET∗ | E∗ | + | (E∗)T | E∗ + ET∗ E∗

=
1

2
[| (E∗)TE∗ | +2ET∗ | E∗ | +ET∗ E∗+ | (E∗)TE∗ |

+ 2 | (E∗)T | E∗ + ET∗ E∗].

‖| (E∗)TE∗ | +ET∗ | E∗ | + | (E∗)T | E∗ + ET∗ E∗ ‖2

=
1

2
‖ [| (E∗)TE∗ | +2ET∗ | E∗ | +ET∗ E∗

+ | (E∗)TE∗ | +2 | (E∗)T | E∗ + ET∗ E∗] ‖2

≤1

2
‖| (E∗)TE∗ | +2ET∗ | E∗ | +ET∗ E∗ ‖2

+
1

2
‖| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET∗ E∗ ‖2

= ‖| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET∗ E∗ ‖2
VOLUME 4, 2016 3
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‖| (E∗)TE∗ | +ET∗ | E∗ | + | (E∗)T | E∗ + ET∗ E∗ ‖2
≤‖| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET∗ E∗ ‖2= T1(E).

Since, λmax(M) ≤‖M ‖2, for any square matrix M .
Hence from the above inequalities, we have

T5(E) ≤ T1(E).

In addition,

λmax(|(E∗)TE∗ | +2ET∗ | E∗ | +ET∗ E∗)

≤‖ (| (E∗)TE∗ | +2 | (E∗)T | E∗ + ET∗ E∗) ‖ .

Hence T6(E) ≤ T1(E).

Lemma 5. [14] Supposew(t) = [w1(t), w2(t), · · · , wn(t)]T ∈
Rn, and D ∈ DI is a matrix defined as in equation (3), then
the following inequalities holds for any positive diagonal
matrix M :

wT (MD + DTM )w ≤wT (MM ∗ + (D∗)TM

+ || MD∗ + DT
∗ M ||2 I)w,

where D∗ and D∗ are defined as in equation(4).

Lemma 6. [9] Supposew(t) = [w1(t), w2(t), · · · , wn(t)]T ∈
Rn, and D ∈ DI is a matrix defined as in equation (3), then
the following inequalities holds for any positive diagonal
matrix M :

wT (MD + DTM )w ≤ − | wT | Z | w |,

where Z = (zij)n×n with zii = −2midii and zij =
−max(| midij +mjdji |, | midij +mjdji |),
for i 6= j.

III. STABILITY ANALYSIS
We find some new sufficient conditions with respect to
the global robust stability of our model (1) which will be
achieved with the help of lemma 2 and 3 for the norm
of delayed connection weight matrices. Further, we denote
the equilibrium point of (1) by w∗ and use some proper
transformation say ui(.) = wi(.)−w∗, i = 1, 2, . . . , n. After
giving such transformation, the network model (1) can be put
in the following form:

u̇i(t) = −ciui(t) +
n∑
j=1

dijgj(uj(t)) +
n∑
j=1

rijgj(uj(t− τ))

(6)

where gi(ui(.)) = fi(wi(.) +w∗i )− fi(w∗i ), i = 1, 2, . . . , n.
Moreover the functions gi will satisfy the assumptions of
fi, i.e., f ∈ k, implies that g ∈ k, . with gi(0) = 0, i =
1, 2, . . . , n. Also that this transformation shifts the equilib-
rium pointw∗ of (1) to the origin of (6).
Now, our aim is to prove the stability of the origin of the
transformed model (6) instead of considering the stability of
w∗.

The matrix form of neural network model (6) can be
written in the form:

u̇(t) = −Cu(t) + Dg(u(t)) + Eg(u(t− τ)) (7)

whereu(t) = (u1(t), u2(t), · · · , un(t))T is the new state vec-
tor, g(u(t)) = (g1(u1(t)), g2(u2(t)), · · · , gn(un(t)))T and
g(u(t− τ)) = (g1(u1(t− τ)), g2(u2(t− τ)), · · · , gn(un(t−
τ)))T

Theorem 1. Let the activation function g ∈ k, . The origin
of NN (7) with network parameters satisfying equation (3) is
GARS if there exist diagonal matrices M = diag(mi > 0)
and K = diag(ki > 0) such that

Ω6 = 2C MK−1 − (MD∗ + (D∗)TM + || MD∗ + DT
∗ M ||2 I)

− 2 || M ||2 T6(E)I > 0.

Proof. We utilize the following positive definite lyapunov-
functional:

V (u(t)) = uT (t)u(t) + 2δ
n∑
i=1

ui(t)∫
0

migi(ξ)dξ

+ (δµ+ η)

n∑
i=1

t∫
t−τ

g2i (ui(ζ))dζ, (8)

where the mi, δ, η and µ are some positive constants to be
determined later. The time derivative of the above lyapunov-
functional along the trajectories of the model (7) is obtained
as follows:

V̇ (u(t)) = −2uT (t)Cu(t) + 2uT (t)Dg(u(t))

+ 2uT (t)Eg(u(t− τ))− 2δgT (u(t))MCu(t)

+ 2δgT (u(t))MDg(u(t))

+ 2δgT (u(t))MEg(u(t− τ))

+ δµ ‖ g(u(t)) ‖22 −δµ ‖ g(u(t− τ)) ‖22
+ η ‖ g(u(t)) ‖22 −η ‖ g(u(t− τ)) ‖22 . (9)

we write the following inequalities:

−uT (t)Cu(t) + 2uT (t)Dg(u(t))

≤ gT (u(t))DT C−1Dg(u(t))

≤‖ D ‖22‖ C−1 ‖2‖ g(u(t)) ‖22 (10)

−uT (t)Cu(t) + 2uT (t)Eg(u(t− τ))

≤ gT (u(t))ET C−1Eg(u(t− τ))

≤‖ E ‖22‖ C−1 ‖2‖ g(u(t− τ)) ‖22 (11)

2δgT (u(t))MEg(u(t− τ))

≤2δ ‖ ME ‖2‖ g(u(t)) ‖2
‖ g(u(t− τ)) ‖2

≤δ ‖ ME ‖2‖ g(u(t)) ‖22
+ δ ‖ ME ‖2‖ g(u(t− τ)) ‖22

≤δ ‖ M ‖2‖ E ‖2‖ g(u(t)) ‖22
+ δ ‖ M ‖2‖ E ‖2‖ g(u(t− τ)) ‖22

≤δ ‖ M ‖2 T1(E) ‖ g(u(t)) ‖22
+ δ ‖ M ‖2 T1(E) ‖ g(u(t− τ)) ‖22 (12)

4 VOLUME 4, 2016
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−2δgT (u(t))MCu(t) ≤ −2δgT (u(t))M CK−1g(u(t))
(13)

By applying equations (10)-(13) in (9) results in:

V̇ (u(t)) ≤‖ D ‖22‖ C−1 ‖2‖ g(u(t)) ‖22
+ ‖ E ‖22‖ C−1 ‖2‖ g(u(t− τ)) ‖22
− 2δgT (u(t))M CK−1g(u(t))

+ δgT (u(t))(MD + DTM )g(u(t))

+ δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22
+ δ ‖ M ‖2 T6(E) ‖ g(u(t− τ)) ‖22
+ δµ ‖ g(u(t)) ‖22 −δµ ‖ g(u(t− τ)) ‖22
+ η ‖ g(u(t)) ‖22 −η ‖ g(u(t− τ)) ‖22 .

Since ‖ D ‖2≤ T6(D), ‖ E ‖2≤ T6(E)and ‖ C−1 ‖2≤‖
(C−1) ‖2 V̇ (u(t))can be written as follows:

V̇ (u(t)) ≤ T 2
6 (D) ‖ C−1 ‖2‖ g(u(t)) ‖22

+ T 2
6 (E) ‖ C−1 ‖2‖ g(u(t− τ)) ‖22

− 2δgT (u(t))M CK−1g(u(t))

+ δgT (u(t))(MD + DTM )g(u(t))

+ δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22
+ δ ‖ M ‖2 T6(E) ‖ g(u(t− τ)) ‖22
+ δµ ‖ g(u(t)) ‖22 −δµ ‖ g(u(t− τ)) ‖22
+ η ‖ g(u(t)) ‖22 −η ‖ g(u(t− τ)) ‖22 .

By taking η = T 2
6 (E)2 ‖ C−1 ‖2 and µ =‖ M ‖2 T6(E), we

can write V̇ (u(t)) in the form

V̇ (u(t)) ≤ (T 2
6 (D) + T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
− 2δgT (u(t))M CK−1g(u(t))

+ δgT (u(t))(MD + DTM )g(u(t))

+ 2δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22 (14)

Using the result of lemma 5, we write

gT (u(t))(MD + DTM )g(u(t)) ≤ gT (u(t))(MD∗ + (D∗)TM

+ || MD∗ + DT
∗ M ||2)g(u(t))

Applying the above inequality in (14) yields

V̇ (u(t)) ≤ (T 2
6 (D) + T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
− 2δgT (u(t))M CK−1g(u(t)) + δgT (u(t))

(MD∗ + (D∗)TM + || MD∗ + DT
∗ M ||2)g(u(t))

+ 2δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22
= (T 2

6 (D) + T 2
6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22

− δgT (u(t))Ω6g(u(t)) (15)

Since Ω6 is a positive definite matrix, from (15) it follows
that

V̇ (u(t)) ≤ (T 2
6 (D) + T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
− δλm(Ω6) ‖ g(u(t)) ‖22 . (16)

If we take δ >
(T 2

6 (D) + T 2
6 (E)) ‖ C−1 ‖2

λmin(Ω6)
, then it follows

that V̇ (u(t)) is negative definite for all g(u(t)) 6= 0. Since
g(u(t)) 6= 0 implies that u(t) 6= 0. If g(u(t)) = 0 and u(t) 6=
0, then V̇ (u(t)) can be written in the following form:

V̇ (u(t)) = −2uT (t)Cu(t) + 2uT (t)Eg(t− τ)

− ηgT (u(t− τ))g(u(t− τ))

− δµgT (u(t− τ))g(u(t− τ))

≤ −2uT (t)Cu(t) + 2uT (t)Eg(t− τ)

− ηgT (u(t− τ))g(u(t− τ)).

Since −uT (t)Cu(t) + 2uT (t)Eg(t − τ) − ηgT (u(t −
τ))g(u(t− τ)) ≤ 0, we have V̇ (u(t)) = −uT (t)Cu(t).
Therefore V̇ (u(t)) is negative definite for all u(t) 6= 0. Fi-
nally, consider g(u(t)) = 0 and u(t) = 0. Then, V̇ (u(t)) =
−ηgT (u(t− τ))g(u(t− τ))− δµgT (u(t− τ))g(u(t− τ)).

It is obvious that V̇ (u(t)) is negative definite for all
g(u(t− τ)) 6= 0. Hence, we have V̇ (u(t)) = 0 if and only if
u(t) = g(u(t) = g(u(t−τ)) = 0, otherwise V̇ (u(t)) < 0. In
addition, V (u(t)) is radially unbounded since V (u(t))→∞
as ‖ u ‖→ ∞. Hence, we conclude that the origin of system
(7), or equivalently the equilibrium point of the neural system
(2) is GARS.

Theorem 2. Let the activation function g ∈ k, . The origin
of NN (7) with network parameters satisfying equation (3) is
GARS if there exist diagonal matrices M = diag(mi > 0)
and K = diag(ki > 0) such that

Ω5 = 2C MK−1 − (MD∗ + (D∗)TM + || MD∗ + DT
∗ M ||2 I)

− 2 || M ||2 T5(E)I > 0.

Proof. By utilizing the result in lemma 2, we get similar to
the arguments discussed as in Theorem 1.

Now, we apply the results of lemma 2, 3 and 6 we get some
new sufficient conditions for the GARS of model (7).

Theorem 3. Let the activation function g ∈ k, . The origin
of NN (7) with network parameters satisfying equation (3) is
GARS if there exist diagonal matrices M = diag(mi > 0)
and K = diag(ki > 0) satisfying the following sufficient
condition

Θ6 = 2C MK−1 + Z − 2 || M ||2 T6(E)I > 0,

where Z = (zij)n×n with zii = −2midii and zij = −max(|
mid‘ij +mjdji |, | midij +mjdji |) for i 6= j.

Proof. From lemma 6, we have

gT (u(t))(MD + DTM )g(u(t)) ≤ − | gT (u(t)) | Z | gT (u(t)) | .

By applying the above inequality in (14) yields:

V̇ (u(t)) ≤ (T 2
6 (D) + T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
− 2δgT (u(t))M CK−1g(u(t))

− δ | gT (u(t)) | Z | gT (u(t)) |
+ 2δ ‖ M ‖2 T6(E) ‖ g(u(t)) ‖22
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= (T 2
6 (D) + T 2

6 (R )) ‖ C−1 ‖2‖ g(u(t)) ‖22
− δ | gT (u(t)) | Θ6 | gT (u(t)) | (17)

Since Θ6 is a positive definite matrix, (17) can be written as

V̇ (u(t)) ≤ (T 2
6 (D) + T 2

6 (E)) ‖ C−1 ‖2‖ g(u(t)) ‖22
− λmin(Θ6) ‖ g(u(t)) ‖22 . (18)

Note that (18) is exactly in the same form as (16) other than
that Ω6 is replaced by Θ6. Hence, we conclude that Θ6 >
0 gives the sufficient condition for the GARS of the neural
network model (7).

Theorem 4. Let the activation function g ∈ k, . The origin
of NN (7) with network parameters satisfying equation (3) is
GARS if there exist diagonal matrices M = diag(mi > 0)
and K = diag(ki > 0) satisfying the following sufficient
condition

Θ5 = 2C MK−1 + Z − 2 || M ||2 T5(E)I > 0,

where Z = (zij)n×n with zii = −2midii and zij = −max(|
mid‘ij +mjdji |, | midij +mjdji |) for i 6= j.

Proof. By utilizing the result in lemma 2, we get similar to
the arguments discussed as in Theorem 3.

IV. COMPARISONS
In this section, we compare our new sufficient conditions
with recent literature results. From lemma 1 the different
upper bounds Tj(E), j = 1, 2, 3, 4 have been given. By
using these different upper bounds, we get different sufficient
conditions for the stability of equilibrium point which are
discussed in [7], [9]. The next Theorem clarifies these results.

Theorem 5. [7]– [10] Let the activation function g ∈ k, . The
origin of NN (7) with network parameters satisfying equation
(3) is GARS if there exist diagonal matrices M = diag(mi >
0) and K = diag(ki > 0) satisfying one of the following
sufficient conditions:

Ωj =2C MK−1 − (MD∗ + (D∗)TM + || MD∗
+ DT

∗ M ||2 I)− 2 || M ||2 Tj(E)I > 0,

where j = 1, 2, 3, 4, D∗, D∗ and E∗, E∗ are defined as in
equations (4) and (5) respectively.

Remark 2. From the result in Lemma 4, we have T6(E) ≤
T1(E) and T5(E) ≤ T1(E). Moreover, the sufficient condi-
tions Ω6, Ω5 and Ω1 are derived from the upper bounds of
T6(E), T5(E) and T1(E) respectively. The result T6(E) ≤
T1(E) implies that Ω6 ≤ Ω1 for all network parameters
satisfying (3), while the result T5(E) ≤ T1(E) implies that
Ω5 ≤ Ω1 for all network parameters satisfying (3). Hence,
the new sufficient conditions of Ω5 and Ω6 always give the
less conservative results than that of condition Ω1 in Theorem
5.

Theorem 6. [7]– [10] Let the activation function g ∈ k, . The
origin of NN (7) with network parameters satisfying equation

(3) is GARS if there exist diagonal matrices M = diag(mi >
0) and K = diag(ki > 0) satisfying one of the following
sufficient conditions:

Θj = 2C MK−1 + Z − 2 || M ||2 Tj(E)I > 0,

where j = 1, 2, 3, 4, E∗ , E∗ are taken as in equation (5), Z =
(zij)n×n with zii = −2midii and zij = −max(| mid‘ij +
mjdji |, | midij +mjdji |) for i 6= j.

Remark 3. From the result in Lemma 4, we have T6(E) ≤
T1(E) and T5(E) ≤ T1(E). Moreover, the sufficient condi-
tions Θ6, Θ5 and Θ1 are derived from the upper bounds of
T6(E), T5(E) and T1(E) respectively. The result T6(E) ≤
T1(E) implies that Θ6 ≤ Θ1 for all network parameters
satisfying (3), while the result T5(E) ≤ T1(E) implies that
Θ5 ≤ Θ1 for all network parameters satisfying (3). Hence,
the new sufficient conditions of Θ5 and Θ6 always give less
conservative results than that of condition Θ1 in Theorem 6.

Remark 4. In this paper, the obtained sufficient conditions
are valid for the time-varying delay. Since the new sufficient
conditions of neural network model (2) are independent of
the time delay parameter. So the obtained results are valid
for time-varying delay.

The unified result of sufficient condition with respect to the
GARS of the NN model (2) is as follows.

Theorem 7. Let the activation function f ∈ k, . For each input
J , the NN (2) with network parameters satisfying equation
(3) is GARS if there exist diagonal matrices M = diag(mi >
0) and K = diag(ki > 0) such that

Φ = 2C MK−1 − F − 2 || M ||2 Tm(E)I > 0,

where Tm(E) = min{Ti(E) :‖ E ‖2 ≤ Ti(E), ∀i =
1, 2, 3, · · · , n}, D∗, D∗ and E∗ , E∗ are defined as in
equations (4) and (5) respectively.

Remark 5. In this paper, the obtained sufficient conditions
are always valid for the uniqueness and existence of an
equilibrium point of the NN model (2). Moreover, the unified
result given in Theorem 7 is also valid for the uniqueness and
existence of an equilibrium point of the NN model (2).

V. NUMERICAL EXAMPLE
Now we demonstrate the advantages of our results with an
example as follows.

Example V.1. Consider the following network parameters of
the NN model (2).

D = a


−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1

 , D = a


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,

E = a


−1 0 −2 1
0 −1 −2 1
−2 0 −1 1
1 −2 1 −1

 ,
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E = a


1 0 −2 1
0 1 −2 1
−2 0 1 1
1 −2 1 −1

 .
Let k1 = k2 = k3 = k4 = 1 and c1 = c2 = c3 = c4 =

13.76. From the above matrices, we get

D∗ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , D∗ = a


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,

E∗ = a


0 0 −2 1
0 0 −2 1
−2 0 0 1
1 −2 1 −1

 ,

E∗ = a


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , Ê = a


1 0 2 1
0 1 2 1
2 0 1 1
1 2 1 1

 .
Using the above parameters, we calculate the following

upper bounds for matrix E:

T1(E) =
√

‖| (E∗)T E∗ | +2 | (E∗)T | E∗ + ET
∗ E∗ ‖2 = 4.4232a,

T2(E) =(‖ E∗ ‖2 + ‖ E∗ ‖2) = 4.7362a,

T3(E) =
√

‖ E∗ ‖22 + ‖ E∗ ‖22 +2 ‖ ET
∗ | E∗ |‖2) = 4.6260a,

T4(E) = ‖ Ê ‖2= 4.3918a.

T5(E) =
√
λmax(| (E∗)T E∗ | +ET

∗ | E∗ | + | E∗ | E∗ + ET
∗ E∗)

=4.3918a,

T6(E) =
√
λmax(| (E∗)T E∗ | +2ET

∗ | E∗ | +ET
∗ E∗) = 4.3536a.

Here, T6(E) ≤ T1(E) and T5(E) ≤ T1(E). Moreover,
based on the network parameters specified in the example,
we have Tm(E) = min(Ti(E)), where i = 1, 2, 3, 4, 5, 6.,
ie., Tm(E) = 4.3536a = T6(E).

The results of Ω5 and Ω6 are compared with those of
Ω1, Ω2, Ω3, Ω4 in Theorem 2 by taking M as an identity
matrix. As such, Ω6 and Ω5 are calculated as follows.

Ω6 =2C MK−1 − (MD∗ + (D∗)TM

+ || MD∗ + DT
∗ M ||2 I)− 2 || M ||2 T6(E)I

=(27.52− 16.7072a)I.

Ω6 > 0 provided a ≤ 1.6471. For the sufficient condition
Ω6 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.6471. Now, Ω5 is calculated as follows:

Ω5 =2C MK−1 − (MD∗ + (D∗)TM

+ || MD∗ + DT
∗ M ||2 I)− 2 || M ||2 T5(E)I

=(27.52− 16.7836a)I.

Ω5 > 0 provided a ≤ 1.6396. For the sufficient condition
Ω5 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.6396. The computations of Ω1,Ω2,Ω3 and Ω4 are as
follows:

Ω1 =2C MK−1 − (MD∗ + (D∗)TM

+ || MD∗ + DT
∗ M ||2 I)− 2 || M ||2 T1(E)I

=(27.52− 16.8464a)I.

Ω1 > 0 provided a ≤ 1.6335. For the sufficient condition
Ω1 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.6335

Ω2 =2C MK−1 − (MD∗ + (D∗)TM

+ || MD∗ + DT
∗ M ||2 I)− 2 || M ||2 T2(E)I

=(27.52− 17.4724a)I.

Ω2 > 0 provided a ≤ 1.5750. For the sufficient condition
Ω2 > 0, the NN model (2)is robust and stable whenever a ≤
1.5750.

Ω3 =2C MK−1 − (MD∗ + (D∗)TM

+ || MD∗ + DT
∗ M ||2 I)− 2 || M ||2 T3(E)I.

=(27.52− 17.252a)I.

Ω3 > 0 provided a ≤ 1.5951. For the sufficient condition
Ω3 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.5951.

Ω4 =2C MK−1 − (MD∗ + (D∗)TM

+ || MD∗ + DT
∗ M ||2 I)− 2 || M ||2 T4(E)I.

=(27.52− 16.7836a)I.

Ω4 > 0 provided a ≤ 1.6396. For the sufficient condition
Ω4 > 0, the NN model (2) is robust and stable whenever
a ≤ 1.6396.

Again we compare our results Θ5 and Θ6 with
Θ1,Θ2,Θ3,Θ4 in Theorem (3) by taking M as an identity
matrix and Z as in the form:

Z = a


−2 −2 −2 −2
−2 −2 −2 −2
−2 −2 −2 −2
−2 −2 −2 −2


Now, Θ6 and Θ5 are calculated as follows:

Θ6 = 2C MK−1 + Z − 2 || M ||2 T6(E)I

= (27.52− 8.7072a)I + Z.

Here Θ6 > 0 provided a ≤ 2.2418. For the sufficient
condition Θ6 > 0, the NN model (2) is robust and stable
whenever a ≤ 2.2418.

Θ5 = 2C MK−1 + Z − 2 || M ||2 T5(E)I

= (27.52− 8.7836a)I + Z.

Here Θ5 > 0 provided a ≤ 2.2223. For the sufficient
condition Θ5 > 0, the NN model (2) is robust and stable
whenever a ≤ 2.2223.

Θ1 = 2C MK−1 + Z − 2 || M ||2 T1(E)I.

= (27.52− 8.8464a)I + Z.
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Here Θ1 > 0 provided a ≤ 2.2065. For the sufficient
condition Θ1 > 0, the NN model (2) is robust and stable
whenever a ≤ 2.2065.

Θ2 = 2C MK−1 + Z − 2 || M ||2 T2(E)I,

= (27.52− 9.4724a)I + Z.

Here Θ2 > 0 provided a ≤ 2.0607. For the sufficient
condition Θ2 > 0, the NN model (2) is robust and stable
whenever a ≤ 2.0607.

Θ3 = 2C MK−1 + Z − 2 || M ||2 T3(E)I,

= (27.52− 9.2520a)I + Z.

Here Θ3 > 0 provided a ≤ 2.0710. For the sufficient
condition Θ3 > 0, the NN model (2) is robust and stable
whenever a ≤ 2.0710.

Θ4 = 2C MK−1 + Z − 2 || M ||2 T4(E)I,

= (27.52− 8.7836a)I + Z.

Here Θ4 > 0 provided a ≤ 2.2223. For the sufficient
condition Θ4 > 0, the NN model (2) is robust and stable
whenever a ≤ 2.2223.

We will give simulation figure to verify the utilization of
our results. For this, we consider the following fixed NN
parameters:

C =


15 0 0 0
0 15 0 0
0 0 15 0
0 0 0 15

 ,D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

E =


1 0 −2 1
0 1 −2 1
−2 0 1 1
1 −2 1 −1

 .
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FIGURE 1. System solution for the initial states u(0) = [−0.2, 0.42, 0.2, 0.5]

Let the activation function (u(t)) = tanh(u(t)) and
constant time delay τ = 0.5, the state response is given in
Figure 1.

From this example, our sufficient conditions Ω5, Ω6 and
Θ5, Θ6 are less conservative than those imposed by the
earlier results of Ωi and Θi, where i = 1, 2, 3, 4 respectively.
We have proved that the obtained upper bound T5(E) is the
minimum as compared with T1(E) and also the upper bound
T6(E)is the minimum as compared with T1(E). Based on
this illustrative example, it is evident that our results are
more beneficial as compared with those in previous studies.
While our sufficient conditions may have less advantage
than the existing stability conditions for different sets of
network parameters, all such results provide the required
sufficient conditions. Therefore, a unified condition is given
in Theorem 7 which is less conservative than the previous
results.

VI. CONCLUSION
A new upper bound has been derived with respect to the
norm of interval connection weight matrices of dynamical
delayed NN models in this study. We have shown that our
upper bound gives the minimum result as compared with
those of some existing upper bounds with respect to the norm
of interval connection weight matrices. Based on the result,
we are able to derive the new sufficient conditions pertaining
to the global robust asymptotic stability of the NN model (2).
The unification of our current result as compared with the
previous robust stability results has clearly demonstrated that
it is a generalization of robust stability results. Finally, we
have presented a numerical example satisfying our require-
ments, which clearly ascertains the advantages of our finding.
In future, this work can be extended to stochastic NN under
parameter uncertainties.
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