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Abstract 
 
In this study, we analyzed SEIR model for human and SEI model for mosquitoes. We considered 
the development of dengue infection from dengue fever (DF) to dengue hemorrhagic fever (DHF). 
The stability of the endemic equilibrium and the disease-free equilibrium states are incurred by 
Routh-Hurwitz criteria. Numerical simulations for the model are used to solve a system of 
differential equations. It showed that the local stability for disease free states and endemic states 
depended on the basic reproductive rate of the disease. The results of this study is recommended as 
an effective control measure for reducing the transmission of dengue disease. 
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1. Introduction 
 
Dengue is a violent infectious disease that occurs in tropical and sub-tropical regions, being one of the 
average harsh arthropod borne viral disease in group of human death and morbidity [1-5]. Dengue 
occurs due to an infection of virus in the Flaviviridae Family. Four serotypes of the dengue virus, 
namely DENV-1, -2, -3 and -4 have been identified as the main causes of the infection. An infection 
with any type of these viruses may be asymptomatic or causing temperature sickness known as dengue 
fever (DF). Such epidemic occurs due to atmosphere change and limited understanding of the 
degenerate native of the dengue disease. The World Health Organization (WHO) has reported 
approximately 50 -100 million cases globally, including 50,000 cases infected with dengue 
hemorrhagic fever (DHF) or dengue shock syndrome (DSS) annually [1, 6-12]. The main prevalence 
of this epidemic disease is in Central America, Southeast Asia and South Asia [11-16]. 
 
 
 
 

 
 
 

 
*Corresponding author: Tel.: 662-329-8000 Ext. 6196 Fax: 662-329-8412 
               E-mail: kppuntan@kmitl.ac.th 



Current Applied Science and Technology Vol. 19 No. 2 (May – August 2019) 

155 
 

 Since preliminary symptoms of the DFF/DSS and DF are similar, a relatively short period of 
infection further complicates the diagnosis of the disease, as well as of the possible person having the 
capacity of spreading severe transpiration, DHF represents a separate pathophysiological procedure or 
is only the opposite end of a continuation of identical diseases. DF follows a change from the normal 
but rather a danger self-inclined course. DHF may show as a relatively mild infection at first but can 
quickly develop into life-menacing disease as fever reduces.  DHF can mainly be distinguished from 
the usual dengue fever due to three predictable classification phrases [4, 13]. 

 WHO classifies the type of DF based on the severity of illness. Classic dengue fever “break 
bone fever” is identified by beginning of a high fever. The symptom appears 3 to 14 days after the 
biting of infected mosquitoes. The characteristics of DF are myalgia, headache, rash and arthralgias. 
As the fever begins to subside 3 to 7 days after first appearance of the symptom, the patient may 
have complete resolution of symptoms, or go on to develop DHF. It assorts dengue virus as with or 
without forewarning covenant (aching belly, retaining, severe vomiting, mucosal hemorrhage, 
nausea and sleepiness, high hematocrit with low thrombocytes) and violent dengue (violent plasma 
puncture, violent hemorrhage, or stalk naught) [9, 13-18]. Cases of DHF are defined by four 
characteristics: recent history of any hemorrhagic manifestation fever, thrombocytopenia and 
evidence of increased vascular permeability. Cases of dengue shock syndrome meet the four criteria 
for DHF but also show signs of circulatory failure, rapid, narrow pulse pressure such as a weak pulse 
or hypotension. The risk of progression to DHF or DSS is increased in secondary infection when 
the individual has been infected previously by a different virus serotype [16-21]. 

 Many researches have applied mathematical model to describe the transmission of dengue 
fever. The work of Sungchasit and Pongsumpun [8] used SEIR model to describe the transmission 
of dengue disease between human and mosquito in each season. SIR model was used to study the 
transmission of dengue infection with two types of mosquitoes such as Aedes aegypti and Aedes 
albopictus mosquitoes [22]. Changal et al. [17] studied about the clinical course and IgG/IgM ratio 
was used to separate the difference between primary and secondary infections. Esteva and Vargas 
[7] used SIR model for describing the transmission of dengue fever in a constant human population 
and variable vector population. Syafruddin and Noorani [14] studied the system of differential 
equations for the dynamics of SEIR model for DF. For more detailed prediction of the epidemic, it 
is necessary to examine the higher order moments, namely the variance of the number of infected. 
The predictability of mean-field models depends on the variations around the mean [22-25]. In this 
work, we focus on the mathematical model of dengue disease with the development of dengue 
infection from DF to DHF. 

 
 

2. Mathematical Model 
 
We use mathematical model to formulate the dynamical equations between human and mosquito 
populations. The development of dengue infection from DF to DHF is considered. We separate the 
human population into 4 groups, namely Susceptible group (S), Exposed group (E), Infectious group 
(I) and Recovered group (R). The infectious group is further subdivided into two subclasses; those 
infected with DF and those whose disease has morphed into DHF. The mosquito populations are 
subdivided into 3 groups, namely Susceptible group (S), Exposed group (E) and Infectious group 
(I) because the mosquitoes do not recover from infection. The basis of evidence is that all human 
population and mosquito population possess fixed rate sizes [6-8, 15, 17]. The characteristics of 
dengue fever transmission can be described through a state transition diagram as shown in Figures 
1-2 [7, 17, 21]. The variables and parameters for model is explained in Table 1. 
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Figure 1. The state transition diagram for the human population 

 
 

 

 
 

Figure 2. The state transition diagram for the mosquito population 
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Table 1. The variables and parameters in model 
 

Variables/ 
parameters 

Description 

hS  The number of susceptible human population 

hE  The number of exposed human population (infected but not yet 
transmit the dengue virus)

1hI  The number of DF patients 

2hI  The number of DHF patients 

hR  The number of recovery human population  

vvS  The number of susceptible mosquito population 

vvE  The number of exposed mosquito population (infected but not yet 
transmit the dengue virus)

vvI  The number of infectious mosquito population  

hh
 

The birth rate of human population 

hh
 

The death rate of human population 

TN  The total human population 

hh
 

The transmission probability of dengue virus from mosquito to 
human

IP

1
 

Incubation rate of dengue virus in human population  

1 The recovery rate of DF cases 

2  The recovery rate of DHF cases 

vv  
The transmission probability of dengue disease from human to 
mosquitoes 

  The rates of change from DF cases to DHF cases 
BB The recruitment rate of mosquitoes 

vN  
The total mosquitoes 

vv  
The death rate of mosquitoes 

EP

1
 The incubation rate of dengue virus in mosquito population 

 
From the state transition diagram of Figure 1, the following system of differential equations is 
written for the human population. 
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dt
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 

                (1) 
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                (2) 
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hhhhhh

h IIIE
IPdt

dI
 

               (3) 
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2
hhhhh

h III
dt

dI
 

                (4) 

  
hhhhh

h RII
dt

dR
  2211

                (5) 
 
Similarly, the state transition diagram of Figure 2 admits the following system of differential 
equations for the mosquito population. 
 

vvvvhhvvvv
vv SIISBB

dt

dS
  )( 21

               (6) 
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              (7) 

vvvvvv
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

1

                 (8) 
 
Therefore, the rate of changes for total human and mosquito populations is equal to zero. From  
 
Setting                    and                , we can have   𝜇௛௛ ൌ 𝛿௛௛.    Birth rates and death rates are 
 
equivalent for human population. For mosquito population, we have   𝜇௩௩ ൌ  𝐵𝐵. 
 
We introduce the normalized variables 
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, then the reduced equations become 

  
hhhvvvvhhhhh

h SNIS
dt

Sd





                                  (9) 

 
hhhhvvhvhhh

h E
IP

ENIS
dt

Ed


 1
             (10) 
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hhhhhh

h IIIE
IPdt
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
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2
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dt
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




              (12) 
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dt
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
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vvvvvvThThvvvvvv
vv E

EP
ENINIIE

dt

Ed


 1
)()1( 21 

           (13) 

 
vvvvvv

vv IE
EPdt

Id



1

               (14) 

with the conditions 
121  hhhhh RIIES

and 
1 vvvvvv IES

. 
 
 

3. Analysis of Mathematical Model 

 
We analyze the formulated model and described the variant region and the positive of solutions. 
The feasible solution set of systems enters the region with the initial conditions as follows: 

}1;10:),,,,,{( 2121  vvvvhhhhvvvvhhhh IEIIESIEIIES . 

We will just define the conditions for local stability through an analysis of the boundaries of the 
areas where the equilibrium points are in   [22]. 
 
3.1 Equilibrium points 
 
The equilibrium points are incurred by setting the righthand side of equations (9)-(14) equal to zero. 
We obtained the equilibrium points as follows: [7, 22] 
Disease free equilibrium point: 

)0,0,0,0,0,(0
hh

hhP

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  

Endemic equilibrium point: 
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3.2 Stability analysis 
 
Theorem 3.2.1 Disease free equilibrium point of the method is locally asymptotically stable if 

0 1R   and unstable if 0 1R  . 

Proof:  We consider the equations 
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1              (16) 
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1
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IP
I                (17) 

  
22212 hhhhhh IIII                 (18) 

 
vvvvvvThThvvvvvvvv E
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1
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vvvvvvvv IE

EP
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The eigenvalues are computed from the solutions of the characteristic equation 0S I  , where 

S is the Jacobian matrix at the equilibrium point and I is the identity matrix of dimension 6x6. If all 
the eigenvalues have negative real parts, then the equilibrium point is locally stable [7]. 
 

 The Jacobian matrix evaluated at )0,0,0,0,0,(0
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
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The characteristic equation is given as  
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All six eigenvalues possess negative real parts if they satisfy the Routh-Hurwitz criteria. Hence, the 
equilibrium point is locally asymptotically stable if the following conditions are satisfied [7-9, 11, 
13, 19]. 
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The conditions of equations (27)-(30) are investigated numerically. Figure 3 plots the 
results of this investigation. It is evident that if R0 < 1, the Routh-Hurwitz criteria is satisfied.  

 

 

 
 

Figure 3. The parameter spaces of disease-free equilibrium point that influences  

the Routh-Hurwitz criteria with the value of parameters; 178.01  , 1/ (365*74)hh  ,

5.0hh , 8.0vv , 2 0.4  , 87.0EP , 001.0 , 09.0IP , 100,000TN  ,

000,5vvN  

 
Each subfigures of Figure 3 shows the values for each condition of equations (27)- (30) 

where the parameter 1A is changed and the other parameters are kept fixed.  It is evident that the 

Routh-Hurwitz situations are satisfied for the case of 10 R .  

 

Theorem 3.2.2   If 10 R , the endemic equilibrium stable 1P  is locally asymptotically stable. 

Proof: The Jacobian matrix is evaluated on the endemic equilibrium point 
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The six eigenvalues are again found from solving the characteristic equation. 
 

 

The solution of equation (31) will yield negative real parts if the Routh-Hurwitz criteria is satisfied, 
i.e. the conditions of equations (27)-(30) are satisfied with Ai = Di, i = 1, 2, 3, 4, 5 and 6. 

To simplify the computations, numerical analysis into conditions laid out in equations 
(27)-(30) was conducted in similar fashion to the disease-free case. Figure 4 plots the results of the 
investigations. It is seen that the Routh-Hurwitz criteria will be satisfied for R0 > 1.   

From Figure 4, the Routh-Hurwitz conditions are satisfied in the case of 0 1R  . Each 

Figure shows the values for each condition when there is the variation of the parameter 1A . We can 

see that the Routh Hurwitz criteria of equations (27)-(30) are again satisfied. 
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Figure 4. The parameter spaces in support of endemic equilibrium point which convinces  

the Routh - Hurwitz criteria with the values of parameters; 178.01  , )74*365/(1hh , 5.0hh ,

8.0vv , 4.02  , 87.0EP , 006.0 , 09.0IP , 000,600TN , 000,30vvN  

 
3.3 Numerical Simulation 
 
From practical point of view, numerical results are very important for any analysis. In our study, we 
suggested the mathematical model in support of dengue disease considering the development of 
dengue disease from DF to DHF. We also performed the numerical solutions by using set of 
parameter values. We considered the dynamics of our model for both disease-free and endemic 
states. The parameter values used in this study are given in Table 2. The numerical results are shown 
in Figures 5-7 [6, 8, 11, 13, 15, 17]. 
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Table 2. Parameters used in simulations for secondary dengue fever. 
 

 
 
 
 
 
 
 
 

Parameter Biological meaning Values 

hh
 

The birth rate of human population 1

(365*74)
per day 

hh
 

The death rate of human population 1

(365 * 74)
 per day 

TN  The total human population 300,000 per day 

hh
 

The transmission probability of dengue virus from mosquito to 
human 

0.01 – 0.009  

IP

1
 

The incubation rate of dengue virus in human population 0.01 – 0.000009 per day 

1 The recovery rate of DF cases 0.1 – 0.09 per day 

2  
The recovery rate of DHF cases 0.1 – 0.9 per day 

vv
 

The transmission probability of dengue disease from human to 
mosquito  

0.1 – 0.99  

BB The recruitment rate of mosquitoes  0.1 – 0.9 per day 

vvN
 

The total mosquitoes 200 - 100,000 per day 

vv
 

The death rate of mosquitoes 0.1 – 0.0007 per day 

EP

1
 

The incubation rate of dengue virus in mosquito population 
0.01 – 0.0087 per day 

  The rates of change from DF cases to DHF cases 0.1 - 0.9 per day 
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                         (aa)                                                                         (ab) 
 

 

(ac) 
 

Figure 5. The time series of each population group 
 

                                             (aa) The time rate of change for the susceptible human population, 
                                    (ab) The time rate of change for the exposed population (infected   

                    but not yet transmit the dengue virus) at time, 
         (ac) The time rate of change for the DF patients, 

            (ad) The time rate of change for the DHF patients, 
                                             (af) The time rate of change for the exposed mosquitoes (infected  
                                                    but not yet transmit the dengue virus) at time, 

                        (ae) The time rate of change for the infectious mosquitoes 
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                                          (ad)                                 (ae)     
 

 
          (af) 

 
Figure 5. (cont.) The time series of each population group  

 
 
 The disease-free equilibrium is locally stable in support of the choice of parameter values 

within Table 2. The parameters used to generate the plots of Figure 5 are 178.01  ,  

)74*365/(1hh , 005.0hh , 009.0vv , 8.02  , 87.0EP , 04.0 , 

09.0IP , 100,000TN  , 000,3vvN , respectively. 
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                             (a)                   (b) 

 

 
                           (c) 
 

Figure 6. The time series of each population group 
 

                                            (a) The time rate of change for the susceptible human population,  
                                            (b) The time rate of change for the exposed population (infected  
                                                  but not yet transmit the dengue virus) at time, 
                                            (c) The time rate of change for the DF patients, 
                                            (d) The time rate of change for the DHF patients, 
                                            (f) The time rate of change for the exposed mosquitoes              
                                                  (infected but not yet transmit the dengue virus) at time, 
                                            (g) The time rate of change for the infectious mosquitoes. 
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                                                  (e)                                      (f)                          

 

        (g) 

Figure 6. (cont.) The time series of each population group 
 
 The endemic equilibrium is locally stable within support of the choice for parameter values 

within Table 2. The parameters used to generate the plots of Figure 6 are 178.01  , 

)74*365/(1hh , 009.0hh , 0008.0vv , 9.02  , 87.0EP , 9.0 ,

0006.0IP , 000,100TN , 000,3vvN , respectively.  
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                                          (aa)                                                                   (ab) 

 
           (ac) 

Figure 7. Numerical solution of (15)-(20) demonstrates the solution trajectory for  
each pair of population group(aa) The solutions projected onto the coordinates (Sh, Eh) 

(ab) The solutions projected onto the coordinates (Sh, Ih1)  
(ac) The solutions projected onto the coordinates (Sh, Ih2) 
(ad) The solutions projected onto the coordinates (Sh, Ev) 
(ae) The solutions projected onto the coordinates (Sh, Iv) 
(af) The solutions projected onto the coordinates (Eh, Ih1) 

                             (ag) The solutions projected onto the coordinates (Eh, Ih2) 
                (ah) The solutions projected onto the coordinates (Eh, Ev) 
                (ai) The solutions projected onto the coordinates (Eh , Iv) 
 

   
                             (ad)                                                                          (ae) 
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                 (af) 
 

 
                      (ag)                                                       (ah) 

 

 
            (ai) 

 

Figure 7. (cont.) Numerical solution of (15)-(20) demonstrates the solution trajectory for  
each pair of population group 

 
 The endemic equilibrium is locally stable in support of the choice for parameter values 

within Table 2. The parameters used to generate the plots of Figure 7 are 178.01  , 

)74*365/(1hh , 009.0hh , 0008.0vv , 9.02  , 87.0EP , 9.0 , 

0006.0IP 000,100TN , 000,3vvN , respectively. 
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4. Conclusions 
 
In this paper, we analyzed the SEIR model for human populations and SEI model for mosquito 
population. The model is considered by taking infection times (primary and secondary infections) 
into account. The results are to predict the developing tendency of disease and recovery. The model 
equations were solved analytically. We obtained the basic reproductive number R0, when 0 1R  . 

The trajectory approaches the disease-free equilibrium point such as indicated within Figure 5. The 
trajectory solutions approached to the endemic equilibrium point as shown in Figure 6. The R0 is 
given as follows: 

                
)1()()()1(

)(

21

2
0

vvvvhhhhhhhh

hhvvhhhhvvT

EPIP

NN
R







                        (32) 

 

 Based on the epidemiological data, we estimated R0 for the dengue sequential infection in 
Thailand. The implication of this point is to feasible defect for the model.  
 Next, we compare the behavior solutions of each population group between SEIR and SIR 
model for human population. The basic SIR model is derived simply by removing the exposed 
human population compartment Eh. Specifically, equations (1)-(5) are now rewritten as follows: 
 

   
hhhvvhhhThh

h SISN
dt

dS
                (33) 

  1
11 1 1

h
hh h h hvhh h

dI
S I I I I

dt
                     (34) 

  
2221

2
hhhhh

h III
dt

dI
                (35) 

  
hhhhh

h RII
dt

dR
  2211

              (36) 

 

 The parameters used to compute the behavior solutions of equations (33)-(36) are kept the 
same as the SEIR model. Figure 8 (i) plots the responses of the SEIR model, while Figure 8 (ii) plots 
the responses of the SIR model of equations (33)-(36). We can see that the solutions of SEIR model 
converge to the equilibrium states faster than SIR model. The parameters of SIR model are the same 
as in SEIR model. 

For the simulation seen in Figure 8 (iii) for SEIR model and (iv) for SIR model, the existing 
only in the imagination part of the complex roots is roughly 0.002698 and 0.014759. Thus, we can 
forecast the period with the oscillations as they approach P1 by method of the solutions of the 
linearized system, acquiring 2 / 0.002698 6.38   years and 2 / 0.014759 1.17  years, 

respectively. 
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(i) Behavior in structured SEIR model 
 

Figure 8.  Plot of number of susceptible and infected humans in SEIR model and SIR model 
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(ii)  Behavior in structured SIR model 

 
 

Figure 8. (cont.) Plot of number of susceptible and infected humans in SEIR model and SIR model 
 



Current Applied Science and Technology Vol. 19 No. 2 (May – August 2019) 

175 
 

 
(iii) Behavior in Ih1 and Ih2 structured SEIR model    (iv) Behavior in Ih1 and Ih2 structured SIR model 
 

Figure 8. (cont.) Plot of number of susceptible and infected humans in SEIR model and SIR model 
 

          (i) The time series for each of population group for the SEIR model. The parameters  

                are 178.01  , )74*365/(1hh , 007.0hh , 0003.0vv , 8.02  ,  

               5.0 , 100,000TN  , 5,000vvN  , 0.09EP , 0.0008IP  and 47.150 R .  

               The solutions converge in support of the endemic disease state (0.0000455,0.15546,  
               0.0000979, 0.000002448, 0.36766, 0.004406).  It is seen that the solutions oscillate  
               to the endemic disease state. 
        (ii) The time series of each population group for the SIR model. The parameters are  
               1 0.178  , 1/ (365*74)hh  , 0.007hh  , 0.0003vv  , 2 0.8  , 5.0 ,  

              100,000TN  , 5,000vvN  and 0 19.17R  . This model has no hhE  and vvE . The  

               solutions approach to the endemic disease state (145.95425, 0.0299943, 0.00003742,  
               0.001838).  We can see that the responses oscillate to the endemic disease state. 
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