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Abstract

In this study, we analyzed SEIR model for human and SEI model for mosquitoes. We considered
the development of dengue infection from dengue fever (DF) to dengue hemorrhagic fever (DHF).
The stability of the endemic equilibrium and the disease-free equilibrium states are incurred by
Routh-Hurwitz criteria. Numerical simulations for the model are used to solve a system of
differential equations. It showed that the local stability for disease free states and endemic states
depended on the basic reproductive rate of the disease. The results of this study is recommended as
an effective control measure for reducing the transmission of dengue disease.
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1. Introduction

Dengue is a violent infectious disease that occurs in tropical and sub-tropical regions, being one of the
average harsh arthropod borne viral disease in group of human death and morbidity [1-5]. Dengue
occurs due to an infection of virus in the Flaviviridae Family. Four serotypes of the dengue virus,
namely DENV-1, -2, -3 and -4 have been identified as the main causes of the infection. An infection
with any type of these viruses may be asymptomatic or causing temperature sickness known as dengue
fever (DF). Such epidemic occurs due to atmosphere change and limited understanding of the
degenerate native of the dengue disease. The World Health Organization (WHO) has reported
approximately 50 -100 million cases globally, including 50,000 cases infected with dengue
hemorrhagic fever (DHF) or dengue shock syndrome (DSS) annually [1, 6-12]. The main prevalence
of this epidemic disease is in Central America, Southeast Asia and South Asia [11-16].
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Since preliminary symptoms of the DFF/DSS and DF are similar, a relatively short period of
infection further complicates the diagnosis of the disease, as well as of the possible person having the
capacity of spreading severe transpiration, DHF represents a separate pathophysiological procedure or
is only the opposite end of a continuation of identical diseases. DF follows a change from the normal
but rather a danger self-inclined course. DHF may show as a relatively mild infection at first but can
quickly develop into life-menacing disease as fever reduces. DHF can mainly be distinguished from
the usual dengue fever due to three predictable classification phrases [4, 13].

WHO classifies the type of DF based on the severity of illness. Classic dengue fever “break
bone fever” is identified by beginning of a high fever. The symptom appears 3 to 14 days after the
biting of infected mosquitoes. The characteristics of DF are myalgia, headache, rash and arthralgias.
As the fever begins to subside 3 to 7 days after first appearance of the symptom, the patient may
have complete resolution of symptoms, or go on to develop DHF. It assorts dengue virus as with or
without forewarning covenant (aching belly, retaining, severe vomiting, mucosal hemorrhage,
nausea and sleepiness, high hematocrit with low thrombocytes) and violent dengue (violent plasma
puncture, violent hemorrhage, or stalk naught) [9, 13-18]. Cases of DHF are defined by four
characteristics: recent history of any hemorrhagic manifestation fever, thrombocytopenia and
evidence of increased vascular permeability. Cases of dengue shock syndrome meet the four criteria
for DHF but also show signs of circulatory failure, rapid, narrow pulse pressure such as a weak pulse
or hypotension. The risk of progression to DHF or DSS is increased in secondary infection when
the individual has been infected previously by a different virus serotype [16-21].

Many researches have applied mathematical model to describe the transmission of dengue
fever. The work of Sungchasit and Pongsumpun [8] used SEIR model to describe the transmission
of dengue disease between human and mosquito in each season. SIR model was used to study the
transmission of dengue infection with two types of mosquitoes such as Aedes aegypti and Aedes
albopictus mosquitoes [22]. Changal et al. [17] studied about the clinical course and IgG/IgM ratio
was used to separate the difference between primary and secondary infections. Esteva and Vargas
[7] used SIR model for describing the transmission of dengue fever in a constant human population
and variable vector population. Syafruddin and Noorani [14] studied the system of differential
equations for the dynamics of SEIR model for DF. For more detailed prediction of the epidemic, it
is necessary to examine the higher order moments, namely the variance of the number of infected.
The predictability of mean-field models depends on the variations around the mean [22-25]. In this
work, we focus on the mathematical model of dengue disease with the development of dengue
infection from DF to DHF.

2. Mathematical Model

We use mathematical model to formulate the dynamical equations between human and mosquito
populations. The development of dengue infection from DF to DHF is considered. We separate the
human population into 4 groups, namely Susceptible group (S), Exposed group (E), Infectious group
(I) and Recovered group (R). The infectious group is further subdivided into two subclasses; those
infected with DF and those whose disease has morphed into DHF. The mosquito populations are
subdivided into 3 groups, namely Susceptible group (S), Exposed group (E) and Infectious group
(D) because the mosquitoes do not recover from infection. The basis of evidence is that all human
population and mosquito population possess fixed rate sizes [6-8, 15, 17]. The characteristics of
dengue fever transmission can be described through a state transition diagram as shown in Figures
1-2 [7, 17, 21]. The variables and parameters for model is explained in Table 1.
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Figure 2. The state transition diagram for the mosquito population
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Table 1. The variables and parameters in model

Variables/ Description
parameters
The number of susceptible human population
S, p pop
E, The number of exposed human population (infected but not yet
transmit the dengue virus)
I, The number of DF patients
| o The number of DHF patients
Rh The number of recovery human population
SW The number of susceptible mosquito population
E The number of exposed mosquito population (infected but not yet
" transmit the dengue virus)
|W The number of infectious mosquito population
Ly The birth rate of human population
5hh The death rate of human population
NT The total human population
Yo The transmission probability of dengue virus from mosquito to
human
1 Incubation rate of dengue virus in human population
IP
7 The recovery rate of DF cases
7, The recovery rate of DHF cases
y The transmission probability of dengue disease from human to
v mosquitoes
a The rates of change from DF cases to DHF cases
BB The recruitment rate of mosquitoes
N . The total mosquitoes
5W The death rate of mosquitoes
1 . . o : .
P The incubation rate of dengue virus in mosquito population

From the state transition diagram of Figure 1, the following system of differential equations
written for the human population.
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ds
7h_/uhh ~VmShlw =Sy

dt (1)
dE

o= ZinSnlw =6 Eh_iEh
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o= —E, =Sl =7 I —aly

dt IP (3)
dl

= Ay =6l =75 s

dt 4)
drR

b= Vil 472 Ly —0nR,

dt (5)

Similarly, the state transition diagram of Figure 2 admits the following system of differential
equations for the mosquito population.

das,,

— =BB-y,S,(I,, +1
dt 7vv vv( ht h2) vv vv (6)
dE,, 1
= 7/WSW(Ih]+Ih2) vv vv _7Evv
dt EP (7
dliw = L Ew - 5w I w
dt EP (®)

Therefore, the rate of changes for total human and mosquito populations is equal to zero. From

dN dN
Setting —= =0 and d_tT =0, we can have Uy, = Opp. Birth rates and death rates are
dt

equivalent for human population. For mosquito population, we have u,,, = BB.

We introduce the normalized variables

S' _.ji__ E' — E, L= JﬂL_ |’ _.Jﬁl_ =¥ _.JSH_
_N N hl_N’hz_N’h_N
T T T T T and

S/ S r Evv Il _ Iw

w N w N > fw T

w W then the reduced equations become

dS, ’ ’ ’

dth =ty —YmSnlwNyw =0 Sy ©)
dE' ! ! ! l ’
Tth = Sl Ny _5thh_EEh

(10)

dI’ 1 ’ ’ r ’

dt: = EE = Ol =7 Iy —aly, an
dl’ ’ ! !
—2 = Ay =0 lh, =7, I

dt (12)
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dE!,
dt
dIW = LE\;v_é‘vvl\;v

dt  EP (14)

! ! ! ! ! ! ! !
Sp+EL+ 1 +10, +RY =1 4 Sy +E,+1, =1

= 7vv(1_E\;v_|\;v)(||:1 NT +It'12NT) - 5WE\;V - LE\;v
EP (13)

with the conditions

3. Analysis of Mathematical Model

We analyze the formulated model and described the variant region and the positive of solutions.
The feasible solution set of systems enters the region with the initial conditions as follows:

Q={S,.E,l,,1,E,.1,):0S, +E, +1,,+1,,<L;E, +1,<1}.

We will just define the conditions for local stability through an analysis of the boundaries of the
areas where the equilibrium points are in Q [22].

3.1 Equilibrium points

The equilibrium points are incurred by setting the righthand side of equations (9)-(14) equal to zero.
We obtained the equilibrium points as follows: [7, 22]
Disease free equilibrium point:

P, =(£1,0,0,0,00)
5hh
Endemic equilibrium point:

P =(S, ,E. 1/, 1,,E 1)

h2s ™=w> "w

Where:

*_ Hin

" S + 1Ny

E; _ IP I\:vavyththh ,

(146, IP) (S + 1, Ny 7))

v _ I:vavyhh:uhh ,
M 1468, IPY S+ +7,) By VN )
||:2 LNy 7 iy @ E' = EP (I + 1)1+ 15N 7,

w

- (I+ 6y, IP)(5hh+a+7/l)(5hh+I:vav7/hh)(5hh+7/2) - 1+EP((|;1 +|;2)NT7/\/V+ Hy

= (NN G+ 0 75) P =G 1+ G PG+ +4) G+ 75Dk = G R+ G IPY G+ + ) G+ 15 )
N N7+ EPU )N (G 0+ 7) Fublon + (14 Gy IPY G+ 1) G+ 72 M
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3.2 Stability analysis

Theorem 3.2.1 Disease free equilibrium point of the method is locally asymptotically stable if
R, < 1 and unstable if R, > 1.

Proof: We consider the equations

Sp =t —7mSplwNy =6, Sy (15)
Ev = ZmStlwNw —mEq _% Ef (16)
1 ! ! ’ !
Iy = ﬁEh_é‘hhlhl_yllhl_alhl a7
o= aliy =0l =7, 1, (18)
Ew = Foll=EL = 1)(15 Ny +10Ny) = 8,EL - E, (19)
I, = iEgv—awlv'v (20)
EP
The eigenvalues are computed from the solutions of the characteristic equation | S-A4l | = 0, where

S is the Jacobian matrix at the equilibrium point and I is the identity matrix of dimension 6x6. If all
the eigenvalues have negative real parts, then the equilibrium point is locally stable [7].

The Jacobian matrix evaluated at Py = ( @, 0,0,0,0,0) is given as
hh

—(3,) 0 0 0 0 _}/hh(ﬂ)Nw
hh
1
0 -, +—) 0 0 0 7 GmN,
IP o,
1
So = 0 — _(é;h 7 ) a 0 0
IP
0 0 0 —(8,+7,) 0 0
0 0 7o (N 7W(ND) =, —(7EP))  ~H(0)+(O)N, 7,
1
0 0 0 0 — —u

The characteristic equation is given as

A+AL+AT+ AL +ALT+ AL +A =0,

Where:
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1 1
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+AEP(y, + 7, +1Py72)) p1y +3EPU+ IP( +7,))pa”) + 65" B+3IP(r, + 7, +244,,)
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1
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A (=N Ny Voot + O Gy EP 1P+ 7,7, + (7, +7, + QEP+1P) 1,7, )4, +

_ (O + 7)) NN VoV ttin + 00 (14 6 IP)(Sy, + 7)) 4, 1+ EPL, )
EPIP

As

2y

(22)

(23)

(24)

(25)

(26)

All six eigenvalues possess negative real parts if they satisfy the Routh-Hurwitz criteria. Hence, the
equilibrium point is locally asymptotically stable if the following conditions are satisfied [7-9, 11,

13, 19].
AA> A
AAA > A+ AA,
AA A +AAAA+A) > AN +AA)+AAA
AA K HAAA (AA+2A) + AA+ A (AA+2AA) A >
AAA + A A)+AAA + A+ AAAA +3A)A+AA
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The conditions of equations (27)-(30) are investigated numerically. Figure 3 plots the
results of this investigation. It is evident that if Ry < 1, the Routh-Hurwitz criteria is satisfied.
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Figure 3. The parameter spaces of disease-free equilibrium point that influences
the Routh-Hurwitz criteria with the value of parameters; ¥, =0.178, &, =1/(365*74),
Yin=0.5,7,=0.8,7,=04,EP=0.87,0=0.001,IP=0.09, N; =100,000,
N,, = 5,000

Each subfigures of Figure 3 shows the values for each condition of equations (27)- (30)
where the parameter A is changed and the other parameters are kept fixed. It is evident that the

Routh-Hurwitz situations are satisfied for the case of R < 1.

Theorem 3.2.2 If R > 1, the endemic equilibrium stable P1 is locally asymptotically stable.
Proof: The Jacobian matrix is evaluated on the endemic equilibrium point

* *

P =(S, ,E I ,1,,E 1) as given by
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~OrdoNutd) 0 0 0 0 Ny
AN @) 0 0 0 AN,
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The six eigenvalues are again found from solving the characteristic equation.

A°+D,A’+D,A*+D,A'+D,A°+D,A'+D, =0 (31)

The solution of equation (31) will yield negative real parts if the Routh-Hurwitz criteria is satisfied,
i.e. the conditions of equations (27)-(30) are satisfied with Ai=D;,1=1, 2, 3,4, 5 and 6.

To simplify the computations, numerical analysis into conditions laid out in equations
(27)-(30) was conducted in similar fashion to the disease-free case. Figure 4 plots the results of the
investigations. It is seen that the Routh-Hurwitz criteria will be satisfied for Ro > 1.

From Figure 4, the Routh-Hurwitz conditions are satisfied in the case of R, > 1. Each
Figure shows the values for each condition when there is the variation of the parameter A . We can
see that the Routh Hurwitz criteria of equations (27)-(30) are again satisfied.
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Figure 4. The parameter spaces in support of endemic equilibrium point which convinces
the Routh - Hurwitz criteria with the values of parameters; 7, =0.178,6,, = 1/(365*74) ,5,,= 0.5,

7=08.7,=04 EP=0.87,a=0.006,I1P=0.09,N; = 600000,N,, = 30,000

3.3 Numerical Simulation

From practical point of view, numerical results are very important for any analysis. In our study, we
suggested the mathematical model in support of dengue disease considering the development of
dengue disease from DF to DHF. We also performed the numerical solutions by using set of
parameter values. We considered the dynamics of our model for both disease-free and endemic
states. The parameter values used in this study are given in Table 2. The numerical results are shown
in Figures 5-7 [6, 8, 11, 13, 15, 17].
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Table 2. Parameters used in simulations for secondary dengue fever.

Parameter Biological meaning Values
L The birth rate of human population 1 per day
(365%74)
5hh The death rate of human population 1 per day
(365*74)
NT The total human population 300,000 per day
y The transmission probability of dengue virus from mosquito to | 0.01 —0.009
hh human
1 The incubation rate of dengue virus in human population 0.01 — 0.000009 per day
IP
7, The recovery rate of DF cases 0.1 —0.09 per day
1
y The recovery rate of DHF cases 0.1 — 0.9 per day
2
7 The transmission probability of dengue disease from human to | 0.1 —0.99
w mosquito
BB The recruitment rate of mosquitoes 0.1 — 0.9 per day
N The total mosquitoes 200 - 100,000 per day
w
S The death rate of mosquitoes 0.1 —0.0007 per day
w
1 0.01 — 0.0087 per day
E The incubation rate of dengue virus in mosquito population
a The rates of change from DF cases to DHF cases 0.1 - 0.9 per day
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Figure 5. The time series of each population group

(aa) The time rate of change for the susceptible human population,

(ab) The time rate of change for the exposed population (infected
but not yet transmit the dengue virus) at time,

(ac) The time rate of change for the DF patients,

(ad) The time rate of change for the DHF patients,

(af) The time rate of change for the exposed mosquitoes (infected
but not yet transmit the dengue virus) at time,

(ae) The time rate of change for the infectious mosquitoes
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Figure 5. (cont.) The time series of each population group

The disease-free equilibrium is locally stable in support of the choice of parameter values

within Table 2. The parameters used to generate the plots of Figure 5 are }; =0.178,
S, = 1/(365%74) | y,, =0.005, y,=0.009, 7,=08, EP=0.87, a=0.04 ,
IP=0.09, N;=100,000, N, = 3,000, respectively.
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Figure 6. The time series of each population group

(a) The time rate of change for the susceptible human population,

(b) The time rate of change for the exposed population (infected
but not yet transmit the dengue virus) at time,

(c) The time rate of change for the DF patients,

(d) The time rate of change for the DHF patients,

(f) The time rate of change for the exposed mosquitoes
(infected but not yet transmit the dengue virus) at time,

(g) The time rate of change for the infectious mosquitoes.
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Figure 6. (cont.) The time series of each population group

The endemic equilibrium is locally stable within support of the choice for parameter values

within Table 2. The parameters used to generate the plots of Figure 6 are } =0.178,
S,y =1/(365%74) | ., =0.009 , y,,=0.0008 , ,=0.9 , EP=0.87 , a=09 ,
IP=0.0006 , NT =100,000, N,, = 3,000, respectively.
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(ae) The solutions projected onto the coordinates (Sh, Iy)
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Figure 7. (cont.) Numerical solution of (15)-(20) demonstrates the solution trajectory for

each pair of population group

The endemic equilibrium is locally stable in support of the choice for parameter values

within Table 2. The parameters used to generate the plots of Figure 7 are } =0.178,
S,y =1/(365%74) | y,, = 0.009 , y,,=0.0008 , 7,=0.9 , EP=0.87 , a=0.9 ,

IP = 0.0006 NT =100000, N,, = 3,000, respectively.
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4. Conclusions

In this paper, we analyzed the SEIR model for human populations and SEI model for mosquito
population. The model is considered by taking infection times (primary and secondary infections)
into account. The results are to predict the developing tendency of disease and recovery. The model
equations were solved analytically. We obtained the basic reproductive number Ry, when R < 1.
The trajectory approaches the disease-free equilibrium point such as indicated within Figure 5. The
trajectory solutions approached to the endemic equilibrium point as shown in Figure 6. The Ry is
given as follows:

R = NTva(ahh +a+72)7hh7/w/uhh
P O (14 5 IPY(Sy, + @ +7,) (S + 72ty (1+ EP a2y, )

(32)

Based on the epidemiological data, we estimated Ry for the dengue sequential infection in
Thailand. The implication of this point is to feasible defect for the model.

Next, we compare the behavior solutions of each population group between SEIR and SIR
model for human population. The basic SIR model is derived simply by removing the exposed
human population compartment E;. Specifically, equations (1)-(5) are now rewritten as follows:

ds,

ot MmN ~YiSnlw =Sy "
dclﬁl = ZmSuly =Gmln =7 Iy —aly, -
d:jihtz: aly =8l =7, In -
ddith = 7ly+7, 1, —0uR, o

The parameters used to compute the behavior solutions of equations (33)-(36) are kept the
same as the SEIR model. Figure 8 (i) plots the responses of the SEIR model, while Figure 8 (ii) plots
the responses of the SIR model of equations (33)-(36). We can see that the solutions of SEIR model
converge to the equilibrium states faster than SIR model. The parameters of SIR model are the same
as in SEIR model.

For the simulation seen in Figure 8 (iii) for SEIR model and (iv) for SIR model, the existing
only in the imagination part of the complex roots is roughly 0.002698 and 0.014759. Thus, we can
forecast the period with the oscillations as they approach P; by method of the solutions of the
linearized system, acquiring 27/0.002698 ~ 6.38 years and 27/0.014759~1.17 years,

respectively.
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I,

Figure 8. Plot of number of susceptible and infected humans in SEIR model and SIR model
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Figure 8. (cont.) Plot of number of susceptible and infected humans in SEIR model and SIR model
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(1) The time series for each of population group for the SEIR model. The parameters

are 7,=0.178, &, =1/(365*74) , 7,,=0.007 , ,,=0.0003, 7,=0.8

a= 0.5, N;=100,000 , N,=5,000 , EP=0.09 , IP=0.0008 and R,=15.47 .

The solutions converge in support of the endemic disease state (0.0000455,0.15546,
0.0000979, 0.000002448, 0.36766, 0.004406). It is seen that the solutions oscillate
to the endemic disease state.

(i) The time series of each population group for the SIR model. The parameters are
7,=0.178 , &, =1/(365*74) , »,=0007 , y,=00003 , »,=0.8 , a=0.5,
N, =100,000 , N =5,000 and R =19.17 . This model has no E,, and E, . The

solutions approach to the endemic disease state (145.95425, 0.0299943, 0.00003742,
0.001838). We can see that the responses oscillate to the endemic disease state.
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