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Abstract. In this work a modified SEIR-SVEVIV model that described the dynamics 

transmission of malaria disease was proposed and analyzed. The standard method is used to 

analyze the behaviors of the proposed model. The results shown that there were two 

equilibrium points; disease free and endemic equilibrium point.  The qualitative results are 

depended on a basic reproductive number 0(R ) . We obtained the basic reproductive number by 

using the next generation method technique and finding the spectral radius. Routh-Hurwitz 

criteria is used for determining the stabilities of the model. If 0R 1 , then the diseases free 

equilibrium point is local asymptotically stable: that is the disease will died out, but if 0R 1 , 

then the endemic equilibrium is local asymptotically stable. After that the SEIR-SVEVIV    

model is modified from the first model by adding the optimal control functions that includes 

two times – dependent control functions with one minimizing the contract between the 

susceptible human and the infected vector and the other, minimizing the population of the 

infected human. The result from the numerical solutions of the models are shown and 

compared for supporting the analytic results.   

1. Introduction   

Malaria is caused by parasites that are transmitted to people through the bites of infected female 

mosquitoes. P. falciparum is the most deadly malaria parasite and the most prevalent in Africa, where 

malaria cases and deaths are heavily concentrated. The first symptoms of malaria – fever, headache, 

chills and vomiting – usually appear between 10 and 15 days after the mosquito bite. Without prompt 

treatment, P. falciparum malaria can progress to severe illness and death. WHO recommends a multi-

pronged strategy to prevent, control and eliminate malaria. Key interventions include: the use of 

insecticide-treated mosquito nets and indoor residual spraying, diagnostic testing, and treatment of 

confirmed cases with effective anti-malarial medicines. In recent years, these measures have 

dramatically lowered the malaria burden in many settings. Malaria transmission continues in many 

countries around the world however, and causes hundreds of thousands of deaths each year (WHO) [1].  

Malaria situation in Thailand week 1-43 on 1 Sep 2017, from1 Jan 2017 to 1 Sep 2017. No. of Thai 

malaria cases is about 7,902 and No. of foreigner  malaria cases is 2,976.By total that decrease 35.31% 

from the year 2016 [2].  Mathematical models have become an important tool for understanding the 

spread and control of disease because of this disease is caused by virus, therefore no drug can cure this 

disease specificially [3-7]. This paper is organized respectively as follows. In section 2, we present an 

SEIR-SVEVIV model for malaria. The standard method is used to analyze the behaviors of the 

proposed model. The analysis of optimization problem is presented in section 3. In section4, we give a 

mailto:bunditun@gmail.com
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numerical appropriate method and the simulation corresponding results. Finally, the conclusions are 

summarized in section 5. 

2.  Material and method 

2.1 Material 

In this paper, we study the transmission of malaria diseases through mathematical modell. By using 

the standard method to analyze the behaviours of the model which was adopted from [8]. The 

population consist of two groups: human population N  and population vector Nv . Human population 

be divided into four disease-state compartments: susceptible individuals  S  , people who can catch 

the disease; exposed individuals  E  , people whose body is a host for the infectious agent but are not 

yet able to transmit the disease; infectious individuals  I  , people who have the disease and can 

transmit the disease; recovered individuals  R  , people who have recovered from the disease. 

Population vector or mosquitoes Nv  are divided into three groups of mosquitoes:   the susceptible 

mosquitoes  population  vS  , the exposed    mosquitoes population vE and  the infected  mosquitoes 

population  vI . In this study, we assumed that there are numbers of people in the populations that have 

already infected by the virus while others have not. It is also assumed that the transmission of the virus 

continues in the population but number of mosquitoes as the vector is constant. People and mosquitoes 

are categorized in one group at a time. Then we obtained the transmission model as shown by a system 

of ordinary differential equations as follows. 

Human Population;  

   

v

v

dS b SI
A ( ) S + R                       (1)

dt 1 I

dE b SI
( ) ( )E                           (2)

dt 1 I

dI
E ( )I                                 (3)

dt

dR
vI ( )R                           

dt






    

 


    

 

       

              (4)

   

Vector Population;  

                                          

v v v
v v

v

v v v
v v v

v

v
v v v v v

dS b S I
B ( ) S                           (5)

dt 1 I

dE b S I
( ) ( )E                    (6)

dt 1 I

dI
E ( )I                             (7)

dt


   

 


    

 

     

 

Where; 
A

S E I R N    


and v v v

B
S +E +I =N =

 μ
v

v

  ,                                            

S(t) is  the susceptible human population at time  t  

E(t) is  the exposed  human population at time  t  

I(t) is  the infected  human population  at time  t  

R(t) is  the recovered  human population at time  t  

N is  the total number of  human population , 

vS (t) is  the susceptible mosquitoes  population at time  t  

vE (t) is  the exposed    mosquitoes population at time  t  
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vI (t) is  the infected  mosquitoes population  at time  t  

vN is  the total number of mosquitoes  population , 

b is  average bite of mosquitoes that potentially infected 

A  is the constant recruitment rate of the human, 

 B  is the constant recruitment rate of the mosquito, 

 is  the death rate  of  human population , 

 is  the death rate  of  mosquitoes population , 

 β  is the probability that a bite by an infectious mosquito results in transmission of disease to human 

vβ  Probability that a bite results in transmission of parasite to a susceptible mosquito 

  is the rate of progression of humans from the exposed state to the infectious state                             
       

 

v α
 is the   rate of progression of mosquitoes from the exposed state to the infectious state  

 
γ  is the recovery rate for humans from the infectious state to the recovered state  

 δ   is the disease-induced death rate of human 

  v is  the disease-induced death rate of mosquito 
   is the  rate of loss of immunity in humans 

υ  is an antibody produced by human in response to the incidence of infection caused by mosquito 

vυ  
is an antibody produced by mosquito in response to the incidence of infection caused by human 

u  is the  contract  rate between the infectious mosquito and susceptible human 

ν  is the rate at which infectious human are treated at each time period 

2.1.1 Basic properties of the model 

Positivity and Boundedness of the Solution 

Theorem 1. If the initial data 0, 0, 0, 0S E I R    and 0, 0, 0v v vS E I    then the solution  

( , , , , , , )v v vS E I R S E I  of the malaria control model (1) are non-negative for all t > 0. Therefore, 

inf
lim sup ( ) , limsup ( )v
t t

v

A B
N t N t

  
  , Where 

 

A
S E I R N


     ,

 
v v v v

v

B
S E I N


     

The Invariant Region 

Theorem 2. The region 
4 3    h v R R      is positively invariant for the model with non-

negative initial condition in 
7R ,where  

 
4 3{( , , , ) | }, {( , , ) | }h v v v v v v v

v

A B
S E I R R S E I R S E I R S E I

 
             . 

The equilibrium points for * * * * * * *

v υ υ(S ,E ,I ,R ,S ,E , I )  are found by setting the right hand side of each 

equations (1-7) equal to zero. We obtained two equilibrium points as follows; 

v

v

v

v

v v

v v v
v v v

v v v v v
v

v

b SI
( )

A R 1 I E I
S ,E ,I ,R ,

b I ( ) ( )
( )

1 I

b S I

B 1 I ( E )
S ,E ,I

b I

1 I



     
   

           
 

 



  
  

      
 

 

      

2.1.1.1 Disease Free Equilibrium Point 0(E ) :  
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In the absence of the disease in the community, there are    0I   and   0vI   , we obtained  

0 ( , , , , , , )v v vE S E I R S E I  where  

v

v

A B
S ,E 0,I 0,R 0,S ,E 0,I 0       

 
 

2.1.1.2 Endemic Equilibrium Point 1(E ) :  

In case the disease is presented in the community,   0   0I and I   , we obtained, 
* * * * *

1 vE (S ,E ,I ,R ,S ,E ,I ) 

  where; 

* * * *

v v v

* * * * * *
* * * * * * *v v v v

v v v* *

v v v v v v
v* *

v v

b S I b S I
( )

A R 1 I E I B 1 I ( E )
S ,E ,I ,R ,S ,E ,I

b I b I( ) ( )
( )

1 I 1 I

 

        
      

                 
   

   

 

2.1.2 Basic Reproductive Number 0(R )  

We obtained a basic reproductive number by using the next generation method [9].  By rewriting the 

equations (1) (7)  in matrix form; 

    
dX

F(X) V(X)
dt

                                                    (16)  

Where F(X) is the non-negative matrix of new infection terms and V(X) is the non-singular matrix of 

remaining transfer terms.  

And setting; 

i 0

i

F (E )
F

X

 
  

 
,

i 0

i

V (E )
V

X

 
  

                                                                                           

(17)  

for all i, j 1,2,3,4,5,6,7  be the Jacobean  matrix of  F(X) and V(X)  at
0E .The basic reproductive 

number
0(R ) is the number of secondary case generate by a primary infectious case (Van den Driessche 

and Watmough, 2002).  It can be evaluated through the formula; 

    1ρ FV                                                                                                    (18) 

Where 1FV  is called the next generation matrix and   1ρ FV  is the spectral radius (largest 

eigenvalues) of 1FV . Then we get the reproduction number 0R  where,  

                

2

v
0

v v v v

(b AB)
R

( )( )( )( )



          

                                                                                    (19) 

Finally, Routh-Hurwitz criteria is used for determining the stabilities of the model. If 0R 1 , then the 

disease free equilibrium point is local asymptotically stable: that is the disease will died out, but if 

0R 1 , then the endemic equilibrium is local asymptotically stable. In this paper, we use optimal 

control this method as part of control measures for malaria disease. From the system of equations (1-
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7), we include two controls u and v that represent, respectively, the effort rate that reduces the contract 

between the infectious vector and the susceptible individuals and the rate at with infectious human are 

treated at each time period. The mathematical system with controls is given by the nonlinear 

differential equations subject to non-negative initial conditions as the following;  

                 

v

v

v

v

dS ub SI
A ( ) S + R                          (1)

dt 1 I

dE ub SI
( ) ( )E                              (2)

dt 1 I

dI
E ( v)I                               (3)

dt

dR
vI ( )R                   

dt


   

 


    

 

        

                          (4)

    

                

v v v
v v

v

v v v
v v v

v

v
v v v v v

dS b S I
B ( ) S                                 (5)

dt 1 I

dE b S I
( ) ( )E                           (6)

dt 1 I

dI
E ( )I                                    (7)

dt


   

 


    

 

     

                                                                        (20) 

Where, v υS(0) > 0,E(0) 0),I(0) 0,R(0) ,S (0) > 0,E (0) 0     and  υI (0) 0   

 

2.2 method 

2.2.1 Optimal control for the transmission dynamics of malaria disease model 

In this section we use the optimal control theory to analyze the behavior of the system of equations

 20 . The objective one is to minimize the contract between susceptible human and the infected 

vector and the other is to minimize the population of the infected human. Mathematically, for a fixed 

terminal time 
ft   , the problem is to minimize the objective functional; 

             

         2 21 2

0

,
2 2

ft

B B
J u v S t I t u t v t dt

 
    

 
                                                             (21) 

The parameter 1 0B   and 2 0B   denote weights that balance the size of the terms for a fixed 

terminal time
ft . Hence we are interested in finding an optimal control pair 

*u and 
*v ,such that:  

           
      * *, min , : ,J u v J u v u v U                                                                                     (22) 

Where,   , | 0 ( ) 1,0 ( ) 1, 0, ,牋    牋f uand v are LebesgU u v u t v t t ue measurablet         

Next, applying the Pontryagin’s Maximum Principle (Kirschner et al.,1997),we derive necessary 

conditions for our optimal control and corresponding state variables, including  the two control 

functions. Therefore we have seven corresponding adjoint variables where 1  corresponds toS  ,
 2  

corresponds to E  , 3 corresponds to I , 4  corresponds to R , 5  corresponds to vS , 6  corresponds to

vE   and  7  corresponds to υI .   
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The Hamiltonian equation is formed by allowing each of the adjoint variables  correspond to each of 

the state variables accordingly and combining the result with the objective functional as below: 

       
7

2 21 2

12 2
i i

i

B B
H S t I t u t v t f



                                                                                (23) 

Where if  is the right hand side of the differential equation of the 
thi  state variables. 

The adjoint equations are formed by taking the derivative of the Hamiltonian with respect to each of 

the state variables as follow; By applying the Pontryagin's maximum principle [10] and the existence 

result of optimal control from [11] we obtain the following theorem: 

 

Theorem 3 There exists an optimal control  * *u ,v U ,and corresponding solution 

* * * * * * *

v υ υS ,E ,I ,R ,S ,E andI  that minimize J(u,v)  over U .And there exists adjoint functions 

1 2 3 4 5 6, , , , ,       and 7  verifying;   

1 1 21 ( ) ( )
1 1

v v

v v

ub I ub I

I I

 
   

 
     

 
 ,  2 2 3          ,                                                                                                                     

 3 3 4 5 2

6 72

(1 )( )
( )

(1 )

(1 )( )
( ) ( ) 1

(1 )

v v v v v v

v

v v v v v v
v v

v

I b S b S I
v v

I

I b S b S I

I

   
       



   
   



 
      



 
   



 
 

/

4 1 4( )         , 5 5 6( ) ( )
1 1

v v

v v

b I b I

I I


 
   

 
   

 
, 

6 6 7( )v v          , 
/

7 1 2 72

(1 )( ) ( )
( )( ) ( )

(1 )

v v
v v

v

I ub S ub SI

I

   
     



 
   


  

With the transversality conditions; 
1 2 3 4 5 6 7( ) ( ) ( ) ( ) ( ) ( ) ( ) 0f f f f f f ft t t t t t t              , 

and  the optimize control  * *,u v  is given by 

* 1 2

1

* 3 4

2

(( )( )
min 1,max 0,

(1 )

( )( )
min 1,max 0, .

v

v

b I S
u

B I

I
v

B

  



  





   
   

   

    
   

   

 

Proof. 

The existence of optimal control can be proved by using the results from [3]. The adjoint equations 

and transversality conditions can be obtained by using Pontryagin's Maximum Principle such that, 
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1 1 21 ( ) ( )
1 1

v v

v v

ub I ub I

I I

 
   

 
     

 
 ,  2 2 3

H

E
    


     


 ,                                                                                                                     

 3 3 4 5 62 2

7

(1 )( ) (1 )( )
( ) ( )

(1 ) (1 )

( ) 1

v v v v v v v v v v v v

v v

v v

I b S b S I I b S b S I
v v

I I

       
        

 

  

   
       

 

  

 
/

4 1 4( )
H

R
    


    


 , 5 5 6( ) ( )

1 1

v v

v v

b I b IH

E I I




 
   

 


     

  
, 

6 6 7( )v v v

H

I
     


     


, 

/

7 1 2 72

(1 )( ) ( )
( )( ) ( )

(1 )

v v
v v

v

I ub S ub SI

I

   
     



 
   


,  

The optimal control pair  * *,u v   are obtained by finding the derivative of the Hamiltonian equation 

with respect to the control variables, equating to zero, and solving equation. Then we get; 

1 2
1 ( ) 0

1 1

v v

v v

b SI b SIH
B u t

u I I

   

 


   

  
. 

Then the optimal value for u  is; 

*

1 2

*

1

( )( )

(1 )

v

v

b I S
u

B I

  




 



. And  2 3 4( ) 0

H
B v t I I

v
  


   

  
, 

Hence the optimal value for v  is;

  

* 3 4

2

( )( )(1 )I
v

B

   
  

By the bounds in U  of the control, the optimal control pair  * *,u v  is given by 

*
* *1 2 3 4

*

1 2

( )( ) ( )( )(1 )
min 1,max 0, , min 1,max 0, .

(1 )

v

v

b I S I
u v

B I B

     



            
      

         
          (24)                                                                                  

 For supporting analytic results we need to resolve the optimal control model numerically. 

3.   Results 

In this section we present the numerical simulations obtained by solving numerically from the 

following optimality system; 
*

v

v

*

v

v

*

*

dS u b SI
A ( ) S + R                     (1),

dt 1 I

dE u b SI
( ) ( )E                          (2),

dt 1 I

dI
E ( v )I                           (3),

dt

dR
v I ( )R                         

dt


    

 


    

 

        

                (4),

   

 

v v
v v

v

v v
v v v

v

v v v v v

dS b S I
B ( ) S                            (5)

dt 1 I

dE b S I
( ) ( )E                      (6)

dt 1 I

dI
E ( )I                               (7)

dt








   

 


    

 

     
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1 1 21 ( ) ( )
1 1

v v

v v

ub I ub IH

S I I

 
   

 


      

  
 ,  2 2 3

H

E
    


     


 ,                                                                                                                     

 3 3 4 5 2

6 72

(1 )( )
( )

(1 )

(1 )( )
( ) ( ) 1,

(1 )

v v v v v v

v

v v v v v v
v v

v

I b S b S I
v v

I

I b S b S I

I

   
       



   
   



 
      



 
   



  

/

4 1 4( )
H

R
    


    


  , 5 5 6( ) ( )

1 1v v

b I b IH

E I I

 




 
   

 


     

  
, 

6 6 7( )v v

H

I




     


     


 

,

* *
/

7 1 2 72

(1 )( ) ( )
( )( ) ( )

(1 )

v v
v v

v

I u b S u b SI

I

   
     



 
   


,  

With 
0 0 00 0 0 0(0) , (0) , (0) , (0) , (0) , (0) (0)v v v v v vS S E E I I R R S S E E andI I        and 

   0, 1, 2,3,4,5,6,7i ft i    

Since ,there were initial condition for the state variables and terminal conditions for the adjoint 

variabless and the optimality system is two-point boundary value problem, with separated boundary 

conditions at 0t   and
 ft . Then we use the semi-implicit finite difference method to solve the 

optimality system (20). We partition the interval 0 , ft t    at the point  0 0,1,2,..., ,it t ih i n  

where h  is the time step such that 
n ft t . And we define the state and adjoint variable;

  1 2 3 4 5 6 7, ( ), ( ), ( ), ( ), ( ), ( ), , , , , , ,S t E t I t R t S t E t I t           and the control u  and v  in terms of 

nodal points 
1 2 3 4 5 6 7, , , , , , , , , , , , , ,

i i i

i i i i i i i i

i i i i v v vS E I R S E I u       and 
iv . After that we use the 

combination of forward and backward difference approximation. The simulations at endemic state 

were carried out using the following values taken from table1, with initial condition;

v υ υS(0)=200,E(0)=40,I(0)=20,R(0)=0,S (0)=2000,E (0)=40 and I (0)=60.  and results show below 
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Table 1. Parameters values used in numerical simulation at endemic state. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Numerical results for a modified SEIR-SVEVIV  model for each state variable with and without 

control u and v.   
 

 

Parameters Description Value 

  Death  rate of human  populations 0.0000548  day-1 

A Recruitment rate of susceptible human  0.000215 

v  Death  rate of vector  populations 0.0667        day-1 

B Constant inflow of infective rate 0.07 

b The average bite of mosquitoes that 

potentially infected 

0.02 

  the  rate of loss of immunity in humans  0.09 

δ   
The disease-induced death rate of human 0.001 

v  Proportional rates of mosquitoes exposed 

to the virus infection 

0.01 

  the duration of infection in the body 0.05 

  Probability that a bite by an infectious 

mosquito results in transmission of disease 

to human 

0.1 

v  Probability that a bite results in 

transmission of parasite to a susceptible 

mosquito 

0.09 

N  Number of human populations 10000 

vN
  

Number of mosquitoes populations 20000 

   The rate of progression of humans from the 

exposed state to the infectious state 

0.0588 

v   
The   rate of progression of mosquitoes 

from the exposed state to the infectious 

state 

0.0556 

u
  

The effort rate that reduces the contract 

between the infectious vector  and the 

susceptible individuals 

0 < u < 1  

v
  

The rate at with infectious human are 

treated at each time period. 
0 < v < 1 
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             Figure 1  Represent time series of susceptible individuals ( )S with and without controls.  

It’s show the number of susceptible individuals ( )S   with controls decreased faster than the number of 

susceptible individuals ( )S without controls. 

 
            Figure 2   Represent time series of exposed individuals ( )E   with and without controls. 

It’s show the number of exposed individuals ( )S with controls are increased faster than the number of 

exposed individuals ( )S without controls. 

 

Fig. 3  Represent time series of infectious individuals ( )I   with and without controls. 

It’s show that the number of infected individuals ( )I with controls are decreased rapidly.                                                       

 

Fig. 4 Represent time series of recovered human ( )R   with and without controls. 

 It’s show the number of recovered human ( )R   with controls are increased more faster than the 

number of recovered human ( )R  without controls.   

4. Conclusions  

In this paper, a modified SEIR-SVEVIV model for transmission dynamics of malaria disease was 

proposed and analyzed in order to better understand the transmission and spread of the malaria disease 

and tried to find an effective strategy for its prevention. The qualitative results are depended on a basic 

reproductive number 0(R ) . We obtained the basic reproductive number by using the next generation 

method technique and finding the spectral radius. Routh-Hurwitz criteria is used for determining the 

stabilities of the model. If 0R 1 , then the diseases free equilibrium point is local asymptotically stable: 
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that is the disease will died out, but if 0R 1 , then the endemic equilibrium is local asymptotically 

stable. To reduce the contract between the susceptible human and the infected vector and the other, 

minimizing the population of the infected human. The optimal control theory has been applied.  By 

using the Pontryagin's maximum principle, the explicit expression of the optimal controls was 

obtained. Simulation results indicate that the numbers of infectious individuals ( )I are decreased after 

control, but the number of recovered human (E) increased after control.  
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