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Abstract—A model for the transmission of HIN1 virus in a
constant human population is studied. Swine flu is a
respiratory disease caused by viruses that infect the
respiratory tract of pigs, resulting in nasal secretions, a
barking cough, decreased appetite, and listless behavior. Swine
flu produces most of the same symptoms in pigs as human flu
produces in people. HIN1 influenza epidemic reported severe
disease caused by a co-infection of dengue virus and influenza
H1N1. Both dengue fever and influenza have a wide range of
clinical presentations with many overlapping features, and
overlap hinders the differentiation of the two diseases. In this
paper, we develop the mathematical model which can describe
the transmission of this disease. The standard dynamical
modelling method is used for analyzing the model. The
simulation outputs for the different set of parameters are given
in this paper. The results of this study should introduce the
way for reducing the outbreak.

Index Terms—H1N1, SEIR model,
vaccination.

transmission model,

I.  INTRODUCTION

Swine influenza is an infection caused by any one of
several types of swine influenza viruses. Swine influenza
virus (SIV) or swine-origin influenza virus (S-OIV) is any
strain  of theinfluenza  family  of  viruses that

is endemic in pigs. As known as HIN1, HIN2, H2N1, H911,

H3N1, H3N2 and H2N3 [1], [4], [5], [10]-[12]. Swine flu is
a respiratory disease caused by viruses that infect the
respiratory tract of pigs, resulting in nasal secretions, a
barking cough, decreased appetite, and listless behavior.

Swine flu produces most of the same symptoms in pigs as
human flu produces in people. Swine flu can last about one
to two weeks in pigs that survive. Swine influenza virus was
first isolated from pigs in 1930 in the U.S. and has been
recognized by pork producers and veterinarians to cause
infections in pigs worldwide [1], [4], [5], [9], [11], [14].

In a number of instances, people have developed the
swine flu infection when they are closely associated with
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pigs, likewise, pig populations have occasionally been
infected with the human flu infection. In most instances, the
cross-species infections (swine virus to man; human flu
virus to pigs) have remained in local areas and have not
caused national or worldwide infections in either pigs or
humans. Unfortunately, this cross-species situation with
influenza viruses has had the potential to change. The eight
RNA strands from novel H1N1 flu have one strand derived
from human flu strains, two from avian (bird) strains, and
five from swine strains.

In the 2009, HINL1 influenza epidemic, countries such as
Nicaragua, Puerto Rico, and India reported severe disease
caused by a co-infection of dengue virus and influenza
H1N1. Both dengue fever and influenza have a wide range
of clinical presentations with many overlapping features,
and overlap hinders the differentiation of the two
diseases.[1], [2], [5]-[8], [12], [15], [16].

In this study, we formulated the dynamic model of HIN1
influenza virus by effect of vaccination to the transmission
model and analyzed the parameters in our model. Then, we
develop the transmission of dengue fever and influenza by
formulating the mathematical models. We used SEIR model
for analyzing and finding the method to decrease the
outbreak of this disease. We studied the transmission of
dengue fever and influenza in Thailand by effect of
vaccination [1]-[4], [7], [8], [12], [15].

Il. MATHEMATICAL MODEL

In this study, we start with the mathematical model for
Swine flu (HIN1) of population. The first assumption is that
the human population can be separated into 4 classes in
human population and 3 vector population which are
succeptibles (S), exposed (E) infectious (1) and recovered (R)
for human population. Succeptibles (S), exposed (E)
infectious (1) for vector population. Based on the transfer
diagram which is shown in Fig. 1, we will show the
formulation of the SEIR epidemic model which is in a 4
dimensional system for human population and 3
dimensional system for vector population. [2], [3], [7]. [8].
[16].
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Fig. 1. Dynamical transmission of human and mosquito populations with
effect of vaccination.
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The variables and parameters of our model can be
described in the following table.

TABLE |I: THE VARIABLES AND PARAMETERS OF OUR MODEL

Variables L
[Parameters Definitions
Su Number of unvaccinated susceptible
human to the transmission of HIN1
virus
E Number of unvaccinated exposed
Y human to the transmission of HIN1
virus
[ Number of unvaccinated infectious
Y human to the transmission of HIN1
virus
R Number of recovered human
S, Number of vaccinated susceptible vector
to the transmission of HIN1 virus
E Number of vaccinated exposed vector to
! the transmission of HIN1 virus
| Number of vaccinated infectious vector
! to the transmission of HIN1 virus
i Birth rate of human
N Total number of human
T
N Total number the vector population
Vv
f Fraction of newborn unvaccinated
u
S Death rate of human
a Transmission rate of HIN1 virus
1P Number of Incubation for virus
,3 Recovery rate of HIN1 virus
y Efficiency of vaccine

From Fig. 1, mathematical model for Swine flu (H1N1)
can be described in the following linear system of ordinary
differential equations.

From Table I, we considered the dynamics of Swine flu
(HIN1) model at the disease free and endemic states. The
values for the parameters used in this study.

ds,
pral f,uN; —aS,1,-05S,
% _ s -LE —5E,
dt 1P
dl 1
"L = —E -8l -0E
L~ LE,-fl,- O, M
dR
T g1, +p1,- 6R
dt ﬁ u ﬂ \
B - )N~ )as 1, -3,
dE 1
Y = (1-y)aS,l,~—E, ~6E
dt ( }/)a u'u IIP v v
dl 1
Y\ =—E —-fI1, -6l
dt 1P Al Y

The total human population, N, is

S,+ E, +1,+R [12, 13, 14]. The equations for the

human compartment are the following equation (1) and The
total population of vector population, N, =S, + E, + 1, .

We assume that there are the constant total number of
human populations and of vector populations. Therefore rate
of change for total human and vector populations are
equivalent to zero. Thus, the birth rate of human and death
rate are equivalent.

s;:S“, E. = Loy L goR
N, N N, N,
s;:SV,EVuEV e 1,
N, N, N, )
Then, we have the reduced equations as follows:
ds,
L =f u—aS!l'-68S/
dt uﬂ uu u
dE/ 1
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dt e : ©))
dl’ 1
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where R"=1-S - E| — I .

The equilibrium points are found by setting the right hand
side of equation (3) equal to zero. By doing this, equilibrium
points are obtained as follows.

A. The disease free equilibrium is the equilibriums point
L4 0,0,0,0)

o

B. The endemic equilibriums is the equilibrium point

with infection.

without infection. E, = (

E =(S., E,I[,E}1))
5r _ (B+3)(A+1IPS)
u o ’
gr_ NIPS(B+8)  f,1IPu
v a 1+1IPS
" _ o LZ
Yoa (B A+1IPY)
£ HP N, *(=1+ ) (5 (B+8)A+1IPS)—f, a u
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and

(4)
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The local stability of each equilibrium point is
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determined by considering the sings of real parts of all
eigenvalues. The eigenvalues () are the solutions of the
characteristic equation.

|J —l//I|:0 where J is the Jacobian matrix at the
equilibrium point. | is the identity matrix dimension 5X5.

If the real parts of all eigenvalues (/) are negative then
that equilibrium state is locally stable [7,8,9,11,12,13].

W4 6,0,0,0), the
1)
characteristic equation is given by
R - I 0
1 fu
(—(ﬁgl—é)—w (* (- )) 0 0
— ~(B)-()~ =0
& (ﬂ)f (é)) v 0 0
0 0 Jol-1+) ( 111) -y 0
0 0 0 - HB-06)y
IIP) ©)

We have characteristic equation:

m (0+y)(B+o+yw)(1+1IPS+1IPy)

(IPS (B+5+y) (L+1IPS+1IPy) — f,llpau) =0

We obtained the characteristic equation,

v AW AT+ Ayt A+ A =0

21IP2 5+ 21IP° S5 +511P% 5°
1IP35

A =

A, = —(IIP5+4IIP p5+11P3 252 +811P? 52
np3s

+811P3 852 +1011P353 — £, 11P2 1)

A —7(2IIP/35+2IIP2/3 5+31IPS% +
HP3s

1211P2 852 +311P3 %52 +1211P%5° +
121IP3 552 +101IP3S5% — £, 1IPay —

f 1IP2qup — 3, 1IP2aup)

PRS2 +41IP? B25352 +

31IPS3 +1211P? 8 5% +31IP3 g25° +81IP%5* +
8IIP3A5* +511P35° — £, IPauB—2 f,\Paus -
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(6)

We check the stability of endemic equilibrium state by
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using the Routh-Hurwitz conditions (6),
given in Fig. 3.

the results are
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We check the stability of endemic equilibrium state by
using the Routh-Hurwitz conditions (8), the results are
given in Fig. 3.
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Fig. 3. The parameter spaces for endemic disease equilibrium state which
satisfies the Routh-Hurwitz conditions with the value of parameters:

respectively, for with y° + Aw* + Ay® + Ay’ + Ay +A, =0

We have checked both disease free equilibrium and
endemic equilibrium solutions which both cases are local
asymptotically stable when R, < 1 for disease free
equilibrium state and Ry > 1 for endemic equilibrium state.
The R value is obtained as following [2], [5], [8], [14]-[16]:

_ pStA+ NP (B+O)+ fLau
C S5(B+8)A+ NPS)+ fauy

0

The transmission of HIN1 virus disease in this study is
based on the SEIR model. We considered the dynamics of
SEIR model at the disease free and endemic states. The

RESULTS AND DISCUSSION

values for the parameters used in this study are shown in
Table 11. The numerical results are shown in Fig. 2 and Fig.
3 below.

TABLE Il: PARAMETERS USED IN SIMULATION FOR SEIR MODEL

27

Parameters . . . Value
Biological meaning
*
H Birth rate of human 11 (365 74) per day
f Fraction of newborn 0.0714 per day
! unvaccinated
*
J Death rate of human 1 (365 74) per day
a . 0.0001 - 0.9 per day
Transmission rate of HIN1
virus
1/((1+3)/2) per da
1P Number of Incubation for ((@+3)2)p y
dengue virus
0.2 per da
B Recovery rate of HIN1 virus P 4
4 . . 0.01-09
Efficiency of vaccine
’ { -
Time (Day) Time (Day)
@ (b)
g
Vrime (Day) e (D)
(©) (d)
£ N

Time (Day)

(®
Fig. 4. Time series of susceptible human to the transmission of HIN1 virus
(a), exposed human to the transmission of HIN1 virus(b), infectious human
to the transmission of HLN1 virus(c), exposed vector to the transmission of
H1N1 virus (d) and infectious vector to the transmission of HLN1 virus (e).
We can see that the solutions equation approach to the disease free
equilibrium state. (0.0714,0,0,0,0) When R0 = 0.00374.
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Fig. 5. Time series of susceptible human to the transmission of H1N1
virus(a) , exposed human to the transmission of HIN1 virus(b), infectious
human to the transmission of HIN1 virus(c), exposed vector to the
transmission of HIN1 virus(d) and infectious vector to the transmission of
H1N1 virus (e). We can see that the solutions equation approach to the
endemic equilibrium state. (0.0012, 0.0000002043, 0.0024, 17032.2,
0.00000002053) When RO = 11.29.
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Fig. 6. The trajectories of dengue disease for the solutions equation
approach to the endemic equilibrium state onto (Su, Eu) (a), (Su, lu) (b),
(Su, Ev) (c), (Eu, lu) (d), (Eu, IV) (), (lu, Iv) (f), (Su, Iv) (9).

IV. CONCLUSIONS

For the purposes of this study, we formulated and
analyzed the transmission of a SEIR model by considering
the effects of vaccination to the transmission of HIN1 virus.
We obtained the basic reproductive number R o, when R <
1, and we found that the trajectory solution as approached to
the disease free equilibrium state as shown in Fig. 4. When
R, > 1, the trajectory solution as approached to the endemic
equilibrium state as shown in Fig. 5 and Fig. 6. Numerical
simulations showed that the effectiveness of the influenza is
in fact effective for controlling the spread of SEIR, the
results are shown in Table Il. The existence of oscillations
around the endemic equilibrium E, are depend on the
eigenvalue with imaginary part different from zero. For the
simulation shown in Fig. 5 and fig. 6, the imaginary part of
the complex roots is approximately 0.00101765 which can
estimate the period of the oscillations by means of the
solutions of the linearized system that is obtained as
21/0.00101765 17.01 years. This value is the
approximation to the period of the solutions [9], [11]-[14].
We can see that the disease can be reduced when the
parameters satisfied to the conditions given in the above
section.
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