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Abstract—A model for the transmission of H1N1 virus in a 

constant human population is studied. Swine flu is a 

respiratory disease caused by viruses that infect the 

respiratory tract of pigs, resulting in nasal secretions, a 

barking cough, decreased appetite, and listless behavior. Swine 

flu produces most of the same symptoms in pigs as human flu 

produces in people. H1N1 influenza epidemic reported severe 

disease caused by a co-infection of dengue virus and influenza 

H1N1. Both dengue fever and influenza have a wide range of 

clinical presentations with many overlapping features, and 

overlap hinders the differentiation of the two diseases. In this 

paper, we develop the mathematical model which can describe 

the transmission of this disease. The standard dynamical 

modelling method is used for analyzing the model. The 

simulation outputs for the different set of parameters are given 

in this paper. The results of this study should introduce the 

way for reducing the outbreak. 

 

Index Terms—H1N1, SEIR model, transmission model, 

vaccination. 

 

I. INTRODUCTION 

Swine influenza is an infection caused by any one of 

several types of swine influenza viruses. Swine influenza 

virus (SIV) or swine-origin influenza virus (S-OIV) is any 

strain of the influenza family of viruses that 

is endemic in pigs. As known as H1N1, H1N2, H2N1, H911, 

H3N1, H3N2 and H2N3 [1], [4], [5], [10]-[12]. Swine flu is 

a respiratory disease caused by viruses that infect the 

respiratory tract of pigs, resulting in nasal secretions, a 

barking cough, decreased appetite, and listless behavior. 

Swine flu produces most of the same symptoms in pigs as 

human flu produces in people. Swine flu can last about one 

to two weeks in pigs that survive. Swine influenza virus was 

first isolated from pigs in 1930 in the U.S. and has been 

recognized by pork producers and veterinarians to cause 

infections in pigs worldwide [1], [4], [5], [9], [11], [14]. 

 In a number of instances, people have developed the 

swine flu infection when they are closely associated with 
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pigs, likewise, pig populations have occasionally been 

infected with the human flu infection. In most instances, the 

cross-species infections (swine virus to man; human flu 

virus to pigs) have remained in local areas and have not 

caused national or worldwide infections in either pigs or 

humans. Unfortunately, this cross-species situation with 

influenza viruses has had the potential to change. The eight 

RNA strands from novel H1N1 flu have one strand derived 

from human flu strains, two from avian (bird) strains, and 

five from swine strains. 

In the 2009, H1N1 influenza epidemic, countries such as 

Nicaragua, Puerto Rico, and India reported severe disease 

caused by a co-infection of dengue virus and influenza 

H1N1. Both dengue fever and influenza have a wide range 

of clinical presentations with many overlapping features, 

and overlap hinders the differentiation of the two 

diseases.[1], [2], [5]-[8], [12], [15], [16]. 

In this study, we formulated the dynamic model of H1N1 

influenza virus by effect of vaccination to the transmission 

model and analyzed the parameters in our model. Then, we 

develop the transmission of dengue fever and influenza by 

formulating the mathematical models. We used SEIR model 

for analyzing and finding the method to decrease the 

outbreak of this disease. We studied the transmission of 

dengue fever and influenza in Thailand by effect of 

vaccination [1]-[4], [7], [8], [12], [15]. 

 

II. MATHEMATICAL MODEL 

 In this study, we start with the mathematical model for 

Swine flu (H1N1) of population. The first assumption is that 

the human population can be separated into 4 classes in 

human population and 3 vector population which are 

succeptibles (S), exposed (E) infectious (I) and recovered (R) 

for human population. Succeptibles (S), exposed (E) 

infectious (I) for vector population. Based on the transfer 

diagram which is shown in Fig. 1, we will show the 

formulation of the SEIR epidemic model which is in a 4 

dimensional system for human population and 3 

dimensional system for vector population. [2], [3], [7], [8], 

[16]. 

 

 
Fig. 1. Dynamical transmission of human and mosquito populations with 

effect of vaccination.  
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The variables and parameters of our model can be 

described in the following table. 

 
TABLE I: THE VARIABLES AND PARAMETERS OF OUR MODEL 

Variables 

/Parameters Definitions 

uS  Number of unvaccinated susceptible 

human to the transmission of H1N1 

virus 

uE  
Number of unvaccinated exposed 

human to the transmission of H1N1 

virus 

uI  
Number of unvaccinated infectious 

human to the transmission of H1N1 

virus 

R  Number of recovered human  

vS  Number of vaccinated susceptible vector 

to the transmission of H1N1 virus 

vE  
Number of vaccinated exposed vector to 

the transmission of H1N1 virus 

vI  
Number of vaccinated infectious vector 

to the transmission of H1N1 virus 

  Birth rate of human 

TN  
Total number of human 

vN  

Total number the vector population 

uf  
Fraction of newborn unvaccinated 

  Death rate of human 

  Transmission rate of H1N1 virus 

IIP  
Number of Incubation for virus  

  Recovery rate of H1N1 virus 

  Efficiency of vaccine 

 

From Fig. 1, mathematical model for Swine flu (H1N1) 

can be described in the following linear system of ordinary 

differential equations. 

From Table I, we considered the dynamics of Swine flu 

(H1N1) model at the disease free and endemic states. The 

values for the parameters used in this study.  
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The total human population, 
TN  is 

RIES uuu  [12, 13, 14]. The equations for the 

human compartment are the following equation (1) and The 

total population of vector population, 
vvvv IESN  . 

We assume that there are the constant total number of 

human populations and of vector populations. Therefore rate 

of change for total human and vector populations are 

equivalent to zero. Thus, the birth rate of human and death 

rate are equivalent. 
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Then, we have the reduced equations as follows: 
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where 
uuu IESR  1 . 

The equilibrium points are found by setting the right hand 

side of equation (3) equal to zero. By doing this, equilibrium 

points are obtained as follows. 

 A. The disease free equilibrium is the equilibriums point 

without infection. )0,0,0,0,(0


ufE   

B. The endemic equilibriums is the equilibrium point 

with infection. 
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 The local stability of each equilibrium point is 
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determined by considering the sings of real parts of all 

eigenvalues. The eigenvalues )( are the solutions of the 

characteristic equation. 

0 IJ   where J is the Jacobian matrix at the 

equilibrium point. I is the identity matrix dimension 5X5. 

If the real parts of all eigenvalues )(  are negative then 

that equilibrium state is locally stable [7,8,9,11,12,13]. 

i) The disease free state )0,0,0,0,(0


ufE  , the 

characteristic equation is given by 

 

(5) 

 

We have characteristic equation: 
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We obtained the characteristic equation, 
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We check the stability of endemic equilibrium state by 

using the Routh-Hurwitz conditions (6), the results are 

given in Fig. 3. 
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Fig. 2. The parameter spaces for disease free state equilibrium state which 
satisfies the Routh-Hurwitz conditions with the value of parameters: 

respectively, for with 054
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ii) The endemic state ),,,,(1 vvuuu IEIESE  , the 

characteristic equation is given by 

 

(7) 
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We obtained the characteristic equation, 
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We check the stability of endemic equilibrium state by 

using the Routh-Hurwitz conditions (8), the results are 

given in Fig. 3. 
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Fig. 3. The parameter spaces for endemic disease equilibrium state which 
satisfies the Routh-Hurwitz conditions with the value of parameters: 

respectively, for with 054
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We have checked both disease free equilibrium and 

endemic equilibrium solutions which both cases are local 

asymptotically stable when R0 < 1 for disease free 

equilibrium state and R0 > 1 for endemic equilibrium state. 

The R0 value is obtained as following [2], [5], [8], [14]-[16]: 
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III. RESULTS AND DISCUSSION 

The transmission of H1N1 virus disease in this study is 

based on the SEIR model. We considered the dynamics of 

SEIR model at the disease free and endemic states. The 

values for the parameters used in this study are shown in 

Table II. The numerical results are shown in Fig. 2 and Fig. 

3 below. 

 
TABLE II: PARAMETERS USED IN SIMULATION FOR SEIR MODEL 

Parameters 
Biological meaning 

Value 

  

Birth rate of human )74*365(/1  per day 

uf  
Fraction of newborn 

unvaccinated 

0.0714 per day 

  
Death rate of human )74*365(/1  per day 

  

Transmission rate of H1N1 

virus 

0.0001 - 0.9 per day 

IIP  Number of Incubation for 

dengue virus  

1/((1+3)/2) per day 

  
Recovery rate of H1N1 virus 

0.2 per day 

  

Efficiency of vaccine 
0.01 – 0.9  

 

   
(a)                                                   (b) 

   
                                   (c)                                                 (d)  

      
    (e) 

Fig. 4. Time series of susceptible human to the transmission of H1N1 virus 

(a), exposed human to the transmission of H1N1 virus(b), infectious human 
to the transmission of H1N1 virus(c), exposed vector to the transmission of 

H1N1 virus (d) and infectious vector to the transmission of H1N1 virus (e). 

We can see that the solutions equation approach to the disease free 
equilibrium state. (0.0714,0,0,0,0) When R0 = 0.00374. 
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(a)                                                   (b)  

 
(c)                                                    (d)  

 
(e) 

Fig. 5. Time series of susceptible human to the transmission of H1N1 

virus(a) , exposed human to the transmission of H1N1 virus(b), infectious 

human to the transmission of H1N1 virus(c), exposed vector to the 
transmission of H1N1 virus(d) and infectious vector to the transmission of 

H1N1 virus (e). We can see that the solutions equation approach to the 

endemic equilibrium state. (0.0012, 0.0000002043, 0.0024, 17032.2, 
0.00000002053) When R0 = 11.29. 

 

 

(a)                                          (b)  

   

                                        (c)                                            (d)  

   
                                       (e)                                      (f) 

                                                              

 
(g) 

Fig. 6. The trajectories of dengue disease for the solutions equation 
approach to the endemic equilibrium state onto (Su, Eu) (a), (Su, Iu) (b), 

(Su, Ev) (c), (Eu, Iu) (d), (Eu, IV) (e), (Iu, Iv) (f), (Su, Iv) (g). 

 

IV. CONCLUSIONS 

For the purposes of this study, we formulated and 

analyzed the transmission of a SEIR model by considering 

the effects of vaccination to the transmission of H1N1 virus. 

We obtained the basic reproductive number R 0, when R 0 < 

1, and we found that the trajectory solution as approached to 

the disease free equilibrium state as shown in Fig. 4. When 

R 0 > 1, the trajectory solution as approached to the endemic 

equilibrium state as shown in Fig. 5 and Fig. 6. Numerical 

simulations showed that the effectiveness of the influenza is 

in fact effective for controlling the spread of SEIR, the 

results are shown in Table II. The existence of oscillations 

around the endemic equilibrium E2 are depend on the 

eigenvalue with imaginary part different from zero. For the 

simulation shown in Fig. 5 and fig. 6, the imaginary part of 

the complex roots is approximately 0.00101765 which can 

estimate the period of the oscillations by means of the 

solutions of the linearized system that is obtained as 

2π/0.00101765 17.01 years. This value is the 

approximation to the period of the solutions [9], [11]-[14]. 

We can see that the disease can be reduced when the 

parameters satisfied to the conditions given in the above 

section. 
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